CREOL, The College of Optics and Photonics
  • About
    About The CollegeDean’s MessageCollege LeadershipWhat is Optics & Photonics?Contact UsIntranetSite MapAnnual Report
  • Academics
    Education at CREOLUndergraduate ProgramGraduate ProgramsCoursesOutreach and Educational Resources
  • Research
    Research at CREOLNewsResearch HighlightsCentersFacilitiesPublications
  • Partnerships
    Industry CollaborationIndustrial Affiliates ProgramIndustrial Affiliates MembershipIndustrial Affiliates SymposiumPhotonics Incubator
  • People
    FacultyScientistsGraduate StudentsAdministrative StaffAlumniOpen PositionsStudent Organizations

Professor Shin-Tson Wu’s paper selected as outstanding paper in 2019 for Light: Science & Applications

Professor Shin-Tson Wu’s paper “Liquid crystal display and organic light-emitting diode display: present status and future perspectives” has been selected as an outstanding paper in 2019 for Nature’s Light: Science & Applications.

Recently, ‘Liquid crystal display (LCD) vs. organic light-emitting diode (OLED) display: who wins?’ has become a topic of heated debate. In this review, we perform a systematic and comparative study of these two flat panel display technologies. First, we review recent advances in LCDs and OLEDs, including material development, device configuration and system integration. Next we analyze and compare their performances by six key display metrics: response time, contrast ratio, color gamut, lifetime, power efficiency, and panel flexibility. In this section, we focus on two key parameters: motion picture response time (MPRT) and ambient contrast ratio (ACR), which dramatically affect image quality in practical application scenarios. MPRT determines the image blur of a moving picture, and ACR governs the perceived image contrast under ambient lighting conditions. It is intriguing that LCD can achieve comparable or even slightly better MPRT and ACR than OLED, although its response time and contrast ratio are generally perceived to be much inferior to those of OLED. Finally, three future trends are highlighted, including high dynamic range, virtual reality/augmented reality and smart displays with versatile functions.

LCD Schematic
Schematic diagram of an LCD. BEF, brightness enhancement film; BLU, backlight unit; DBEF, dual brightness enhancement film; LGP, light guide plate.
OLED Schematic
Schematic diagram of an OLED. (a) Basic structure proposed by Tang and VanSlyke in 1987. (b) Multi-layer structure employed in current OLED products. EIL, electron-injection layer; ETL, electron-transporting layer; EML, emitting layer; HTL, hole-transporting layer; HIL, hole-injection layer.

CREOL, The College of Optics and Photonics

University of Central Florida
4304 Scorpius St.
P.O. Box 162700
Orlando, FL 32816-2700
(407)823-6800
creol@ucf.edu
LI-In-Bug