Research Areas:
Liquid Crystal Display
Adaptive Lens
New Photonic Materials
Solid-State Lighting
Spatial Light Modulator
Bio-Photonics
Liquid Crystal Display
Advanced Liquid Crystal Displays
Objectives:
- Quantum-dots enhanced LCDs
- Augmented reality and virtual reality
- Polymer-stabilized blue-phase LCDs
- Tunable plasmonic displays
Recent Publications:
- T. Zhan, Y. H. Lee, and S. T. Wu, �High-resolution additive light field near-eye display by switchable Pancharatnam�Berry phase lenses,� Opt. Express 26(4), 4863-4872 (2018).
- D. Franklin, R. Frank, S. T. Wu, and D. Chanda, �Dynamically tunable, single pixel full-color plasmonic display,� Nature Commun. 8, xxx (2017).
- H. Chen, R. Zhu, J. He, W. Duan, W. Hu, Y.Q. Lu, M. C. Li, S. L. Lee, Y. Dong, and S. T. Wu, �Going beyond the limit of an LCD�s color gamut,� Light: Science and Application (Nature Family) (In press, 2017).
- (Invited paper) H. Chen, J. He, and S. T. Wu, �Recent advances in quantum-dot-enhanced liquid crystal displays,� IEEE. J. Selected Topics in Quantum Electronics, 23(5), 1900611 (2017).
- Y. Huang, H. Chen, G. Tan, H. Tobata, S-I Yamamoto, E. Okabe, Y. F. Lan, C. Y. Tsai, and S. T. Wu, “Optimized blue-phase liquid crystal for field-sequential-color displays,” Opt. Mater. Express 7, 641-650 (2017).
- H. Chen, F. Gou, and S. T. Wu, �A submillisecond-response nematic liquid crystal for augmented reality displays,� Opt. Mater. Express 7(1), 195-201 (2017).
- F. Gou, H. Chen, M. C. Li, S. L. Lee, and S. T. Wu, “Submillisecond-response liquid crystal for high-resolution virtual reality displays,” Opt. Express 25(7), 7984-7997 (2017).
Adaptive Lens
Adaptive Lens
Objectives:
- To develop adaptive liquid crystal/liquid lenses for cell phones, 3D displays, and biomedical imaging
- To invent a polarization independent lens with a large optical power
- To investigate nano-scale liquid crystal devices for bio-inspired optics
- To develop dynamic foveated imaging to mimic human vision
Publications:
- J. Xiong, T. Zhan, and S. T. Wu, “A versatile method for fabricating Pancharatnam-Berry micro-optical elements,” Opt. Express 27(20), 27831-27840 (2019).
- G. Tan, Y. H. Lee, T. Zhan, J. Yang, S. Liu, D. F. Zhao, and S. T. Wu, “Foveated imaging for near-eye displays,” Opt. Express 26(19), 25076-25085 (2018).
- Y.H. Lee, G. Tan, K. Yin, T. Zhan, and S. T. Wu, “Compact see-through near-eye display with depth adaption,” J. SID 26(2), 64-70 (2018)
- Y. H. Lee, F. Peng, and S.-T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668-1675 (2016).
- R. Zhu, S. Xu, Q. Hong, S.T. Wu, C. Lee, C. M. Yang, C. C. Luo, and A. Lien, “A polymeric lens embedded 2D/3D switchable display with dramatically reduced crosstalk,” Appl. Opt. 53, 1388-1395 (2014).
- H. Ren and S. T. Wu, “Introduction to Adaptive Lenses” (Wiley, 2012).
New Photonic Materials
New Photonic Materials
Objectives:
- Tunable plasmonic materials
- Quantum-dots and perovskite light-emitting materials
- Low-loss infrared materials
Recent Publications:
- F. Gou, R. Chen, M. Hu, J. Li, J. Li, Z. An, and S. T. Wu, “Submillisecond-response polymer network liquid crystals for mid-infrared applications,” Opt. Express 26(23), 29735-29743 (2018).
- J. He, A. Towers, Y. Wang, P. Yuan, J. Zhang, J. Chen, A. J. Gesquiere, S.T. Wu and Y. Dong, “In-situ synthesis and macroscale alignment of CsPbBr3 Perovskite nanorods in polymer matrix,” Nanoscale 10, 15436-15441 (2018).
- D. Franklin, R. Frank, S. T. Wu, and D. Chanda, “Dynamically tunable, single pixel full-color plasmonic display,” Nature Commun. 8, xxx (In press, 2017).
- Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S. T. Wu, and Y. Dong, “Ultrastable, highly luminescent organic-inorganic Perovskite-polymer composites,” Adv. Mater. 28(48), 10710-10717 (2016).
- H. Chen, F. Peng, F. Gou, Y. H. Lee, M. Wand, and S. T. Wu, “Nematic LCD with motion picture response time comparable to organic LEDs,” Optica 3(9), 1033-1034 (2016).
- D. Franklin, Y. Chen, A. Vázquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.T Wu, and D. Chanda, “Polarization independent, actively tunable color generation on imprinted plasmonic surfaces,” Nature Communications 6, 7337 (2015).
Solid-State Lighting
Solid-State Lighting
Objectives:
- High efficiency lighting
- Quantum-dots lighting
- LCD backlighting
- Freeform optics
Recent Publications:
- G. Tan, Y. Huang, M.C. Li, S. L. Lee, and S. T. Wu, “High dynamic range liquid crystal displays with a mini-LED backlight,” Opt. Express 26(13), 16572-16584 (2018).
- Z. He, H. Chen, Y. H. Lee, and S. T. Wu, “Tuning the correlated color temperature of white light-emitting diodes resembling Planckian locus,” Opt. Express 26(2), A136-A143 (2018).
- (Invited paper) H. Chen, J. He, and S. T. Wu, “Recent advances in quantum-dot-enhanced liquid crystal displays,” IEEE. J. Selected Topics in Quantum Electronics, 23(5), 1900611 (2017).
- Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S. T. Wu, and Y. Dong, “Ultrastable, highly luminescent organic-inorganic perovskite-polymer composites,” Adv. Mater. 28(48), 10710-10717 (2016).
- H. Chen, R. Zhu, Y. H. Lee, and S. T. Wu, “Correlated color temperature tunable white LED with a dynamic color filter,” Opt. Express 24(6), A731-A739 (2016).
- R. Zhu, Q. Hong, H. Zhang, and S.T. Wu, “Freeform reflectors for structural lighting,” Opt. Express 23(25), 31828-31837 (2015).
Spatial Light Modulator
Spatial Light Modulator
Objectives:
- Submillisecond-response laser beam steering and adaptive optics devices.
- Low-voltage and fast-response spatial light modulators (SLMs).
- Blue-phase liquid crystal phase modulators.
Recent Publications:
- R. Chen, Y. H. Lee, T. Zhan, K. Yin, Z. An, and S. T. Wu, “Multistimuli-responsive self-organized liquid crystal Bragg gratings,” Adv. Opt. Mater. 7(9), 1900101 (2019).
- H. Chen, G. Tan, Y. Huang, Y. Weng, T. H. Choi, T. H. Yoon, and S. T. Wu, “A low voltage liquid crystal phase grating with switchable diffraction angles,” Sci. Rep. 7, 39923 (2017).
- Y. Weng, D. Xu, Y. Zhang, X. Li, and S. T. Wu, “A polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(16), 17746-17759 (2016).
- H. Chen, Y. Weng, D. Xu, N.V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287-7298 (2016).
Bio-Photonics
Bio-Photonics
Objectives:
- To explore bio-inspired photonics and applications.
- To explore quantum dot devices for photomedical applications.
- To develop AR coating using self-assembly bio-inspired photonics, e.g., moth eye effect.
Publications:
- H. Chen, J. He, R. Lanzafame, I. Stadler, H. El Hamidi, H. Liu, J. Celli, M. R. Hamblin, Y. Huang, E. Oakley, G. Shafirstein, H. K. Chung, S. T. Wu, and Y. Dong, “Quantum dot light emitting devices for photomedical applications,”
J. SID 25(5), xxx (2017). - G. Tan, R. Zhu, Y. S. Tsai, K. C. Lee, Z. Luo, Y. Z. Lee, and S. T. Wu, “High ambient contrast ratio OLED and QLED without a circular polarizer,” J. Phys. D: Appl. Phys. 49, 315101 (2016).
- S. He, J. Deng, J. Fang, and S. T. Wu, “Lag-burst kinetics of surfactant displacement from the liquid crystal/aqueous interface by bile acids,” Colloids and Surfaces A: 471, 148-152 (2015).