# N.A.V.I.S. NAVIGATIONAL ASSISTANCE FOR VISUALLY IMPAIRED SHOPPERS

**Final Presentation** 

Spring 2025 / Summer 2025 - Group 10

### Meet the team



Matias Barzallo PSE



Michael Castiglia CpE, VLSI



Aden McKinney CpE, Comp.



Pavan Senthil EE, Comp.







- According to the WHO, over 2.2 billion people worldwide are affected by visual impairment.
  - Some conditions are **uncorrectable** by glasses, medicine, or surgery, often caused by **age-related disorders** (e.g., macular degeneration, glaucoma).
  - These are classified as 'low vision' by the NIH.
- The CDC predicts that, in the U.S., low vision among adults 40+ is expected to double by 2050.
- This project focuses on individuals with **visual acuity from 6/18 to 3/60**, who may struggle with recognizing objects beyond **arm's length**.
- Daily activities often require caregiver assistance, which can reduce independence and quality of life.
- Our goal: develop a **portable assistive device** to help users **navigate grocery stores**, **locate items** (within 0.5m), and **avoid obstacles**.



### Goals



#### **Basic Goals**

- Create a portable navigation device that users can mount onto a shopping cart
- Guide visually impaired users to within **0.5 meter** of the items in the users shopping list
- Detect obstacles in front of the shopping cart to warn users of potential collisions

#### **Advanced Goals**

- Create an optimized route through the grocery store after the user provides the item list
- Assist users with locating the position of the object on the shelf
- Incorporate additional feedback systems to avoid collisions with other shoppers, walls, and obstacles

#### Stretch Goals

- Extend application to more severe visual impairments (total blindness)
- Expand to other locations (different store types such as libraries, hardware stores,
- etc.)
- Modulate light for depth camera system in order to be unaffected by different light sources







### **Basic Objectives**

- Lightweight for easy setup and teardown
- Rechargeable and long lasting battery
- Integrate Inertial Measurement Unit (IMU) data
- Detect obstacles with active stereovision depth camera system
- Provide directions through audio commands

### **Advanced Objectives**

- Path planning localization and user item list
- Provide directions through haptic commands.
- Active stereovision depth camera system capable of at least 60°FOV and 2m object detection
   Stretch Objectives
- Integrate a camera to identify and indicate shelf level upon reaching the requested object
- Incorporate real-time updates if users change the item list or obstacles require route changes
- Track the user's **hand position** to provide additional precise audio commands
- Expand the store map database to support multiple locations
- Ensure the optical system can filter out diverse light interferences





# Engineering Requirements and Specifications

| Specification                     | Target Value                     |
|-----------------------------------|----------------------------------|
| Distance User Guided from Product | Within 0.5 meter                 |
| Success Rate                      | At least 90%                     |
| Collision Avoidance Latency       | <300 ms                          |
| Size                              | Approx. 50x50x30 cm <sup>3</sup> |
| Weight                            | 2.5 - 5 lbs                      |
| Battery Life                      | At least 1 hour                  |
| Setup/Teardown Time               | Within 5 minutes                 |

| Component           | Parameter         | Target Value & Unit(s)         |
|---------------------|-------------------|--------------------------------|
|                     |                   |                                |
| Camera Focus length | Range             | 1 - 6 meters                   |
| Cameras             | Field of View     | 30°(V) x 60°(H)                |
| Light Emitter       | Field of View     | 30°(V) x 60°(H)                |
| Haptic Motors       | Signal Discretion | 3+ distinct vibration patterns |
| Speaker             | Output Volume     | At least 60dB SPL at 0.5m      |

# Engineering Requirements and Specifications

| Specification                     | Target Value                     |
|-----------------------------------|----------------------------------|
| Distance User Guided from Product | Within 0.5 meter                 |
| Success Rate                      | At least 90%                     |
| Collision Avoidance Latency       | <300 ms at roughly 2m            |
| Size                              | Approx. 50x50x30 cm <sup>3</sup> |
| Weight                            | 2.5 - 5 lbs                      |
| Battery Life                      | At least 1 hour                  |
| Setup/Teardown Time               | Within 5 minutes                 |

| Component           | Parameter         | Target Value & Unit(s)         |
|---------------------|-------------------|--------------------------------|
| Camera Focus length | Range             | 1 - 6 meters                   |
| Cameras             | Field of View     | 30°(V) x 60°(H)                |
| Light Emitter       | Field of View     | 30°(V) x 60°(H)                |
| Haptic Motors       | Signal Discretion | 3+ distinct vibration patterns |
| Speaker             | Output Volume     | At least 60dB SPL at 0.5m      |

# Engineering Requirements and Specifications Testing Results

| Test<br>Location/<br>Number | Percentage of requested item announced when cart was within proximity (10 items total). | Was the cart within 0.5m for all announced items? If no, how many items were out of range? | Was the presented obstacle detected at 2m and within 300ms? |
|-----------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Library 1                   | 80%                                                                                     | No - 2                                                                                     | No                                                          |
| Library 2                   | 90%                                                                                     | No - 1                                                                                     | No                                                          |
| Library 3                   | 90%                                                                                     | No - 2                                                                                     | Yes                                                         |
| Library 4                   | 100%                                                                                    | No - 2                                                                                     | Yes                                                         |
| Library 5                   | 100%                                                                                    | Yes                                                                                        | Yes                                                         |
| CREOL 1                     | 90%                                                                                     | No - 1                                                                                     | No                                                          |
| CREOL 2                     | 100%                                                                                    | Yes                                                                                        | Yes                                                         |
| CREOL 3                     | 100%                                                                                    | No - 1                                                                                     | Yes                                                         |
| CREOL 4                     | 100%                                                                                    | Yes                                                                                        | Yes                                                         |
| CREOL 5                     | 100%                                                                                    | Yes                                                                                        | Yes                                                         |

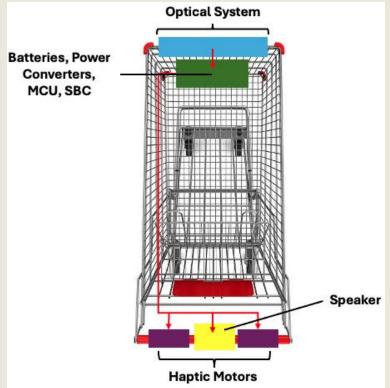
## Optical Design Specifications

| Component                         | Parameter                | Target Value | Unit    |
|-----------------------------------|--------------------------|--------------|---------|
| Pigtailed Laser Diode             | Optical Power            | 50           | mW      |
|                                   | Wavelength               | 650          | nm      |
|                                   | Operating Current        | 130          | mA      |
|                                   | Operating Voltage        | 2.4          | V       |
|                                   | Fiber Type Single Mode   |              |         |
| Fiber Splitter                    | Splitting Ratio          | 50:50        |         |
|                                   | Port Configuration       | 1x2 or 2x2   |         |
|                                   | Fiber Mode Type          | Single Mode  |         |
|                                   | Operating Wavelength     | 650          | nm      |
|                                   | Excess Loss 0.3          |              | dB      |
|                                   | Splitting Ratio Accuracy | ~±6          | %       |
| Collimating Lens                  | Focal Length             | 6            | mm      |
|                                   | Diameter                 | 6            | mm      |
|                                   | Coating                  | AR           |         |
| DOE (Diffractive Optical Element) | FOV (V x H)              | >30 x 30     | Degrees |
|                                   | Diffraction Pattern      | Grid (60x60) |         |
| Camera Sensor Module              | QE (at 650nm)            | 50           | dB      |
|                                   | SNR                      | 20           | dB      |
|                                   | Resolution               | 1920 x 1080  |         |
|                                   | Dynamic Range            | 70           | dB      |
|                                   | FOV (V x H)              | 70 x 50      | Degrees |





# HARDWARE DESIGN

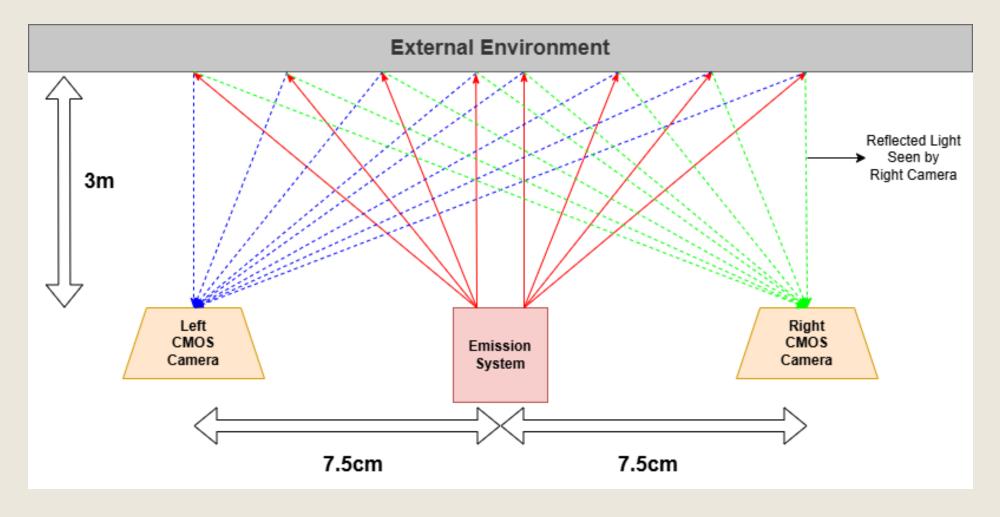

# High Level Design Diagram

Optical System at Front of Cart for Larger Distance Range

User Output Peripherals on Handlebars

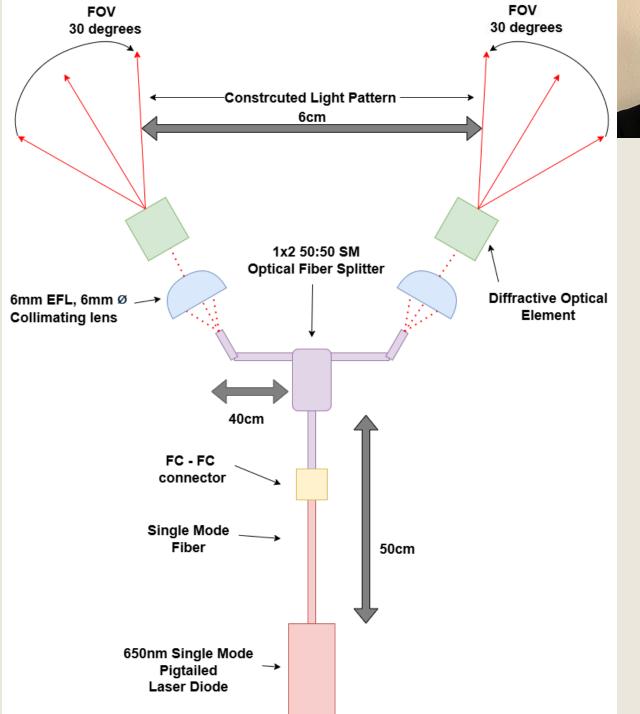
In our prototype, these are closer together than they would be in a full-sized shopping cart, but the idea remains the same.









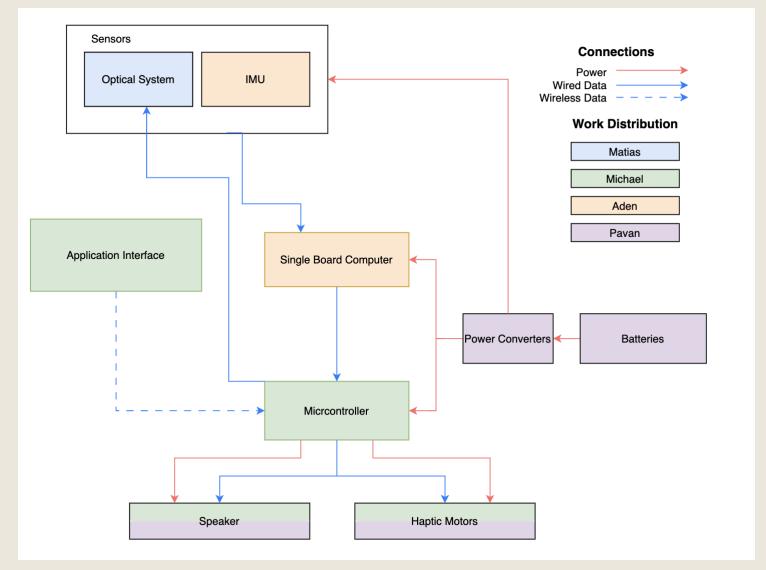










### Optical Emission Hardware Block Diagram








### Electrical Hardware Block Diagram







# ELECTRICAL HARDWARE AND COMPONENT SELECTION



## Microcontroller Part

Selection: ESP32-WROOM-32E (16MB FLASH)

- Have used prior in Real Time Systems (familiarity)
- Widely used for many examples and support
- PlatformIO C/C++ or Arduino libraries available – both with FreeRTOS for task scheduling

| Family Name | Benefits                                                                                                     | Drawbacks                                                |
|-------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| STM-32      | Wide use in industry                                                                                         | Harder to source development boards with fast turnaround |
| ESP-32      | Familiarity with Use  Easy C Libraries  Wide use in industry  Easy to source developme nt boards for testing | Can be slightly more expensive than competing solutions. |
| MSP430      | Tends to be a cheaper solution  Easy to source development boards for testing                                | Lesser Capabilities, Simple Nature.                      |



### SBC

Selection: Raspberry Pi 5 (16GB RAM)

- Low power
- Easy to use I/O
- Familiarity from prior projects

| Product               | Advantages                                                                              | Disadvantages                                            |
|-----------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|
| Raspberry Pi 5        | Dual core ARM processor, enough for our uses  Several SKUs for different amounts of RAM | Modern, less<br>backtested support.                      |
|                       | Official support for ROS2                                                               |                                                          |
| NVidia Jetson<br>Nano | Standard and known formats                                                              | Relatively old  Not used by many products.               |
| Latte Panda           | High compute power, more than enough for our uses.                                      | High power requirements  High heat generation  High cost |



### **IMU Part**

Selection: CEVA BN0085

- More robust noise filtering leads to better signal for the applications
- 9-DoF
- Robust built-in firmware and drivers for Linux and ROS2

| IMU Name     | Advantages                                                                                                                             | Disadvantages                                                                                                   |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Bosch BMI270 | Robust on-chip noise<br>filtering<br>Contains Titan Core for<br>on-chip configuration                                                  | More complex, needs software loading on startup More development time due to complexity No ROS2 driver          |
| CEVA BNO085  | Has ROS2 drivers Robust on-chip noise filtering Newest solution, best community and manufacturer support 9 DoF (includes magnetometer) | Does not allow on-chip configuration – not needed for our purposes (good stock settings better) Most expensive. |
| TDK MPU6000  | Has ROS2 drivers Large back catalog of prior support Lower default frame times, easier to filter in post-processing                    | Older, falling out of favor (some drivers must be backported) Little to no on-chip noise filtering              |

# Audio -Speaker

Selection: 8 Ohm 1W Voice Range Speaker

- Range suited for speech cues
- Higher impedance at sufficient volume within a grocery store environment
- Low power consumption





| Product                                              | Nominal<br>Impedance<br>(Ohms) | Rated<br>Power<br>(W) | Sensitivity<br>(dB SPL) | Frequency<br>Range (Hz) |
|------------------------------------------------------|--------------------------------|-----------------------|-------------------------|-------------------------|
| 2.5 Inch Full<br>Range<br>Speaker                    | 4                              | 3                     | 88.5                    | 200-20000               |
| 1.1 Inch (28<br>mm) 8 Ohm<br>Voice Range<br>Speaker  | 8                              | 8                     | 86                      | 650-6000                |
| 1.5 Inch (40<br>mm), 8 Ohm<br>Voice Range<br>Speaker | 8                              | 1                     | 81                      | 350-6000                |



### Audio - Driver

Selection: Class D (PAM8302AASCR)

- Greatest efficiency
- Lightest weight
- Capable of supporting the 8 Ohm 1 W speaker (rated for 2.5 W and at least 4 Ohm)

| Amplifier Class | Typical Efficiency | Pros                                                                                              | Cons                                                                                                                                                                                 |
|-----------------|--------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Α               | ~15-35%            | No possibility of crossover distortion.                                                           | Inefficiency = heat  Single ended designs prone to hum and higher levels of distortion.                                                                                              |
| В               | ~70%               | Relatively high efficiency.                                                                       | Potential for significant amounts of crossover distortion and compromised fidelity                                                                                                   |
| A/B             | ~50-70%            | More efficient than Class A.  Relatively Inexpensive.  Crossover distortion can be rendered moot. | Efficiency is good, but not great.                                                                                                                                                   |
| G & H           | ~50-70%            | Improved efficiency over Class A/B.                                                               | Costlier than Class A/B but higher power levels are achievable in a smaller form factor.                                                                                             |
| D               | >90%               | Best possible efficiency Light weight.                                                            | Pulse width modulators operating at relatively low frequencies can compromise high frequency audio reproduction.  Some designs produce varying sor quality depending on peaker load. |

# Haptic - Motor and Driver

#### Selection: Coin ERM

- Very cheap, including common DC drivers (DRV2605L)
- Supports libraries for multiple modes
- Strong haptic feedback
- Precision doesn't matter much
- Easy to integrate with the shopping cart handlebar



| Motor<br>Type | Mechanism                                         | Drive<br>Signal                           | Power<br>Consumption | Haptic<br>Feedback                                   | Size                            | Cost     |
|---------------|---------------------------------------------------|-------------------------------------------|----------------------|------------------------------------------------------|---------------------------------|----------|
| ERM           | Rotation of<br>an<br>unbalanced<br>mass           | DC<br>Voltage                             | Moderate             | Strong but imprecise                                 | Larger<br>than LRA<br>and Piezo | Low      |
| LRA           | Linear<br>oscillation of<br>a mass on a<br>spring | AC<br>Voltage at<br>resonant<br>frequency | Low                  | Moderately<br>strong,<br>more<br>precise<br>than ERM | Compact                         | Moderate |
| Piezo         | Deformation<br>of<br>piezoelectric<br>material    | AC<br>Voltage at<br>highfrequ<br>encies   | Low to<br>moderate   | Very high<br>precision                               | Ultra-<br>compact               | High     |

# Power Distribution Table



| Component                                    | Supply<br>Voltage    | Maximum<br>Current Draw | Maximum Power Consumption | Average Power<br>Consumption<br>(90%<br>Efficiency) |
|----------------------------------------------|----------------------|-------------------------|---------------------------|-----------------------------------------------------|
| ATLS104D Laser<br>Driver                     | 3-5V (3.3V)          | 200 mA                  | 0.66W                     | 0.73W                                               |
| CEVA BNOO85<br>IMU                           | 1.71-3.63V<br>(3.3V) | 790 uA                  | 0.0026W                   | 0.003W                                              |
| PAM8303AASCR<br>Class D Amplifier            | 2-5.5V<br>(3.3V)     | 450 mA                  | 1.485W                    | 1.65W                                               |
| DRV2605L<br>Haptic Motor<br>Driver (One-Hot) | 2-5.2V<br>(3.3V)     | 80 mA                   | 0.264W                    | 0.293W                                              |
| ESP-32<br>Microcontroller                    | 3.0-3.6 V<br>(3.3V)  | 200 mA                  | 0.66W                     | 0.73W                                               |
| Raspberry Pi 5                               | 5V                   | 5A                      | 25W                       | 27.78W                                              |
| Total                                        | -                    | 6A                      | 28.07W                    | 32.2W                                               |



# Power Source Technology

#### Selection: LiFePO4 (Li-ion) Battery

- Portable, reliable power
- Increased weight manageable due to cart chassis
- System requirements: Maximum 35W,6A peak current draw
- Products have additional capacity with included over-current, over-discharge, and overcharge cases



| Battery<br>Technology | Energy Density  | Output<br>Capacity | Cost     | Rechargeable<br>Cycle Life | Safety                                             | Potential Risks                                                               |
|-----------------------|-----------------|--------------------|----------|----------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|
| LiFePO4               | High            | Moderate           | Moderate | 500-5000<br>cycles         | Moderately<br>safe with<br>protection<br>circuits  | Overheating,<br>thermal<br>runaway<br>without<br>protection                   |
| LiPo                  | Very high       | High               | Moderate | 300-500 cycles             | Less safe,<br>prone to<br>swelling and<br>puncture | Thermal<br>runaway, risk<br>of swelling<br>without<br>protection<br>circuitry |
| NiMH                  | Moderate to low | Low                | Low      | Up to 1000 cycles          | Very safe                                          | Bulky and<br>heavy                                                            |

| Product          | Voltage (V) | Capacity (Ah) | Cost    | Safety       |
|------------------|-------------|---------------|---------|--------------|
| XZNY LiFePO4     | 12.8        | 8             | \$24.99 | Built-in BMS |
| NERMAK LiFePO4   | 12.8        | 10            | \$33.99 | Built-in BMS |
| BtrPower LiFePO4 | 12.8        | 8             | \$29.99 | Built-In BMS |

# Voltage Regulators

Selection: LM2679SX-ADJ Switching Regulators

- High efficiency, low heat robust regulators
- Supports maximum current draw (5A) and battery input voltage (12.8V)
- Multiple regulators used for various component demands (adjustable output voltage model)



| Regulator Type | Efficiency       | Heat<br>Dissipation                             | Noise                                         | Cost   | Applications                   |
|----------------|------------------|-------------------------------------------------|-----------------------------------------------|--------|--------------------------------|
| Switching      | High<br>(~90%)   | Low                                             | Higher                                        | Higher | High-power,<br>high-efficiency |
| Linear         | Low<br>(~30-50%) | High (excess<br>power<br>dissipated as<br>heat) | Very low (ideal<br>for sensitive<br>circuits) | Lower  | Low-power,<br>low-noise        |

| Product      | Input Voltage Range (V) | Output Current (A) | Output Voltage Range<br>(V) |
|--------------|-------------------------|--------------------|-----------------------------|
| LM2679SX-ADJ | 8-40                    | 5                  | 1.21-37                     |
| LM2576S-ADJ  | 4-40                    | 3                  | 3.3-37                      |
| TPS543521    | 3.8-18                  | 5                  | 0.6-17.€ ))                 |

# OPTICAL HARDWARE AND COMPONENT SELECTION

## Depth Measuring System Technology

| 99 |  |
|----|--|
|    |  |
|    |  |

| Technology                     | Depth Accuracy / resolution | Environmental constraints | Reliability | Feasibility | Cost        |
|--------------------------------|-----------------------------|---------------------------|-------------|-------------|-------------|
| Active Stereo Vision           | Medium-High                 | Low-Medium                | High        | Medium      | Medium-High |
| Passive Stereo Vision          | Medium                      | Medium                    | Medium      | Medium      | Low         |
| Structured light depth sensing | Medium-High                 | Medium                    | Medium      | Medium      | Medium      |
| Sonar                          | Low-Medium                  | High                      | Low         | High        | Low         |
| Lidar                          | Very High                   | Low                       | High        | Low         | Very High   |

- Robust and Reliable
- Somewhat commonly used (Xbox Kinect)
- Cheaper than LiDAR



### Pigtailed Laser Diode Product

| MOON I |
|--------|
| 191    |
|        |
|        |

| Product Manufacturer and Number         | Optical Power | Fiber type | Operating Voltage (V) | Operating<br>Current (mA) | Threshold<br>Current (mA) | Price (USD) |
|-----------------------------------------|---------------|------------|-----------------------|---------------------------|---------------------------|-------------|
| Xinland Group 650nm 50mW                | 50mW          | SM         | 2.4                   | 130                       | 50                        | 110         |
| Civilasers<br>650nm Pigtailed Laser(SM) | 80mW          | SM         | 2.4                   | 180                       | 55                        | 211         |
| Laser Tree<br>LT-660030-SM-FC           | 30mW          | SM         | 2.5                   | 135                       | 55                        | 155         |
| Shengshi PLD-F85                        | 120mW         | SM         | 2.4                   | 300                       | 18                        | 78.66       |

Selection: Xinland Group 650nm 50mW

- Reliable Manufacturer
- Cheaper than most products



### Laser Diode Driver Product

| Product                                         | Mode                             | Input Supply (V) | Max Output Current (mA) | Price (USD) |
|-------------------------------------------------|----------------------------------|------------------|-------------------------|-------------|
| LDD200P Series 200mA                            | Constant current                 | 5 - 12           | 200                     | \$105.00    |
| Thorlabs LDC205C Benchtop LD Current Controller | Constant current, constant Power | 120 (AC)         | 500                     | \$1210.31   |
| ATLS1A104D                                      | Constant Current                 | 3.3 - 5          | 1000                    | \$69.00     |

Selection: ATLS1A104D

- Cheap
- Easy to use DAC current set



### DOE Light Pattern

| (O) |  |
|-----|--|
|     |  |
|     |  |

| Pattern type                     | Depth Information Quality                                                        | Environmental Robustness                                                        | Processing Complexity                            |
|----------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|
| Random Dots                      | High;<br>Unique local features, low ambiguity                                    | Moderate;<br>Innefective with non-solid objects,<br>resilient against occlusion | High;<br>Exhaustive feature matching<br>required |
| Dot Array                        | Moderate-high;<br>Suffers from pattern ambiguity,<br>dependent on number of dots | Low-Moderate;<br>Innefectiove with non-solid objects                            | Moderate;<br>Geometric asumptions would help,    |
| Horizontal and<br>Vertical Lines | Moderate; Suffers from ambiguity, Dependent on number of lines                   | Moderate-High;<br>Effective with non-solid objects                              | Low; edge detection is computationally efficient |

### Selection: Horizontal and Vertical Lines

- Low processing complexity
- Most amount of features



### **DOE Product**



| Product<br>Manufacturer and<br>Part Number | Grid Size (V x H) | Field of View (V x H) | Material           | Line Density in a<br>100cm^2 area 3m<br>away<br>Possible features | Cost  |
|--------------------------------------------|-------------------|-----------------------|--------------------|-------------------------------------------------------------------|-------|
| DigigramDTC-25                             | 60 x 60           | 40 x 40               | PET or PMMA        | 5.4<br>16.47                                                      | \$80  |
| Laserland<br>QYG-004                       | 51 x 51           | 30 x 30               | PMMA               | 6.2<br>22.63                                                      | \$1.5 |
| HOLOEYE<br>DE-R256                         | 51 x 51           | 30 x 30               | Polycarbonate (PC) | 6.2<br>22.63                                                      | \$72  |
| Lasermate<br>DOE-SG60                      | 60 x 60           | 30 x 30               | PET                | 6.7<br>27.36                                                      | \$23  |

### Selection: Lasermate DOE-SG60

- Reliable Manufacturer
- High amount of possible features
- Cheaper than other available products
- Designed for 650nm which caused problems with 850nm laser



## Camera Sensor Technology



| Sensor<br>Technology | Spectral Compatibility and Sensitivity                                       | Image Quality                                                | System Integration                                                   | Cost and Availability                            |
|----------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|
| CMOS                 | Moderate;<br>QE of 50% at 650nm, higher in<br>back-side illumination sensors | Good resolution;<br>moderate noise; decent<br>dynamic range  | High;<br>Low power and easy<br>integration                           | Low cost<br>High availability                    |
| sCMOS                | High;<br>QE of >70% at 650nm;<br>good for low light                          | Exceptional resolution;<br>Low noise;<br>Wide dynamic range  | Moderate;<br>Higher power consumption,<br>higher computational power | Moderate-High cost<br>Moderate-High availability |
| CCD                  | Moderate;<br>QE of 65% with back-side<br>illumination                        | Low noise;<br>Excellent uniformity;<br>Slower readout        | Moderate;<br>Higher power consumtion,<br>larger size, outdated       | Moderate cost<br>Moderate availability           |
| EMCCD                | Very High;<br>QE of >90% at 650;<br>good for low light                       | Ultra low noise;<br>High uniformity;<br>few photon detection | Very low;<br>Complex electronics, cooling<br>requirements            | High cost<br>Low-Moderate availability           |

**Selection: CMOS** 

- Reliable and very commonly used
- High QE at VIS wavelength
- Plug and Play USB



### Camera Sensor Product



| Camera name<br>(Sensor name)    | QE at 650nm (%) | SNR (dB) | Resolution           | Dynamic Range (dB) | Price (USD) |
|---------------------------------|-----------------|----------|----------------------|--------------------|-------------|
| Arducam Pivariety 2.2MP Mira220 | 54              | 40       | 1600 x 1400 (2.2 MP) | 62dB               | 110         |
| Arducam 1MP<br>0V9281           | ~30             | 38       | 1280 x 800 (1MP)     | 68                 | 25          |
| Thorlabs CS165MU                | 20              | 69       | 1440 x 1080 (1.6MP)  | 66.4               | 850         |
| Arducam 2MP<br>IMX323           | 90              | 42       | 1920 x 1080 (2MP)    | 72                 | 49          |

- Cheap option
- Good for lowlight environments
- UVC compliant, no extra drivers needed







| Splitter technology | Insertion and Excess Loss (dB)                                 | Wavelength Uniformity                                          | Availability and Cost            |
|---------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------|
| FBT                 | Moderate;<br>Insertion loss: 3.2-3.5<br>Excess loss: 0.19-0.99 | Sensitive to wavelength changes of more                        | High availability  Low cost      |
| PLC                 | Low;<br>Insertion loss: 3.11-3.21<br>Excess loss: 0.1-0.2      | High;<br>Sensitive to wavelength changes of more<br>than 200nm | High availability  Moderate cost |

- High available in market
- Cheap options
- Most comonly used for 1x2 connectors



### Fiber Optic Splitter Product

|  | 2000 |
|--|------|

| Product Distributor and Number                                 | Insertion and Excess Loss (dB)         | Splitting Ratio<br>Accuracy | Operating Wavelength Range                                                                 | Cost  |
|----------------------------------------------------------------|----------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------|-------|
| Thorlabs<br>#TW670R5F1                                         | Insertion: ≤4.2 dB,<br>Excess: ≤0.3 dB | 50:50 ±6%                   | 650nm ±75nm,<br>With the posibility of handling other<br>wavelengths at higher attenuation | \$415 |
| Anhui Wanchuang<br>Communication<br>Technology SM 650nm<br>1x2 | Insertion: ≤3.8 dB,<br>Excess: ≤0.5 dB | 50:50 ±6.5%                 | 650nm ±20nm,<br>With the posibility of handling other<br>wavelengths at higher attenuation | \$230 |
| Qingdao Applied<br>Photonic Technologies<br>650nm SM 1x2 50:50 | Insertion: ≤3.9 dB,<br>Excess: ≤0.8 dB | 50:50 ±6.5%                 | 650nm ±60nm,<br>With the posibility of handling other<br>wavelengths at higher attenuation | \$180 |

- Reliable Manufacturer
- Low Excess loss
- Big range of operating wavelength



# SCHEMATICS & PCB DESIGN

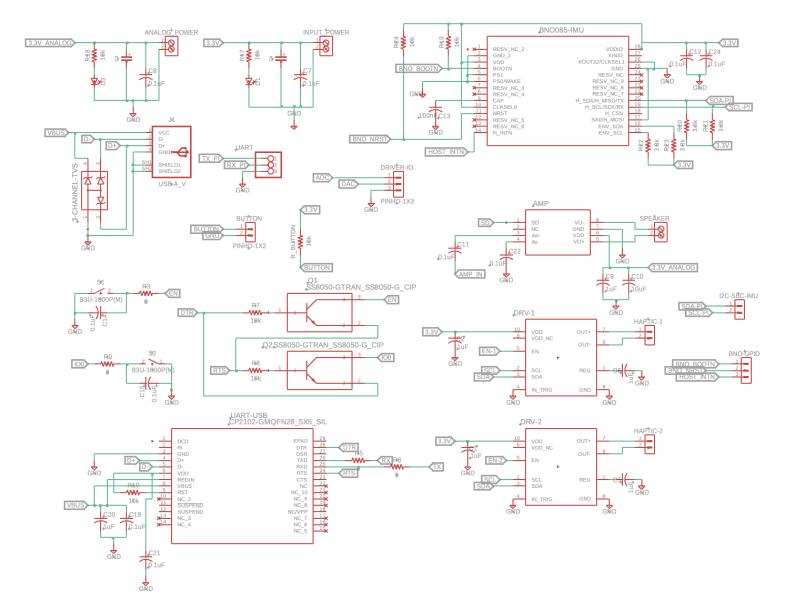


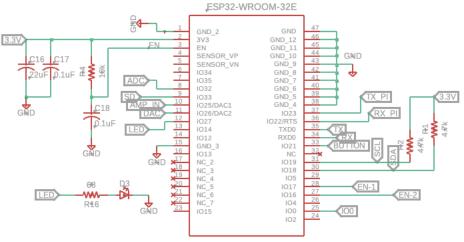


#### Main Board:

- ESP32, UART-to-USB module (CP2102), IMU, speaker amplifier, haptic motor drivers.
- Contains input/outputs to the SBC, output connectors to the peripherals devices (speaker/haptics), input power and programming connections.
- Separation of analog components and lines (DAC, ADC, speaker amplifier) from digital components and lines.

### Power Daughterboards:

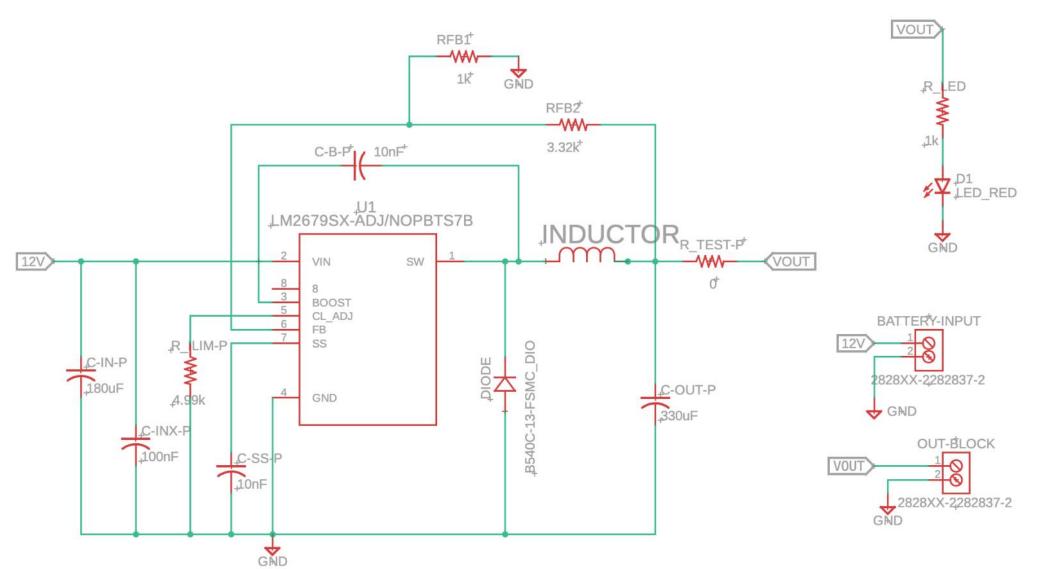

- Adjustable switching regulator for both 5V and 3.3V output for various components and separation
  of digital and analog supplies.
- Input from battery, output to boards.
- Easy to replace in the event of failure or burnt-out boards. On-board status LEDs.


### Laser Diode Driver Daughterboard:

- Laser diode driver, input/output to MCU for laser modulation and current diagnostics, separate input power supply and output to laser diode terminals.
- Dedicated board for analog and thermal management. Closer positioning to the laser diode mount.

#### Main Board Schematic

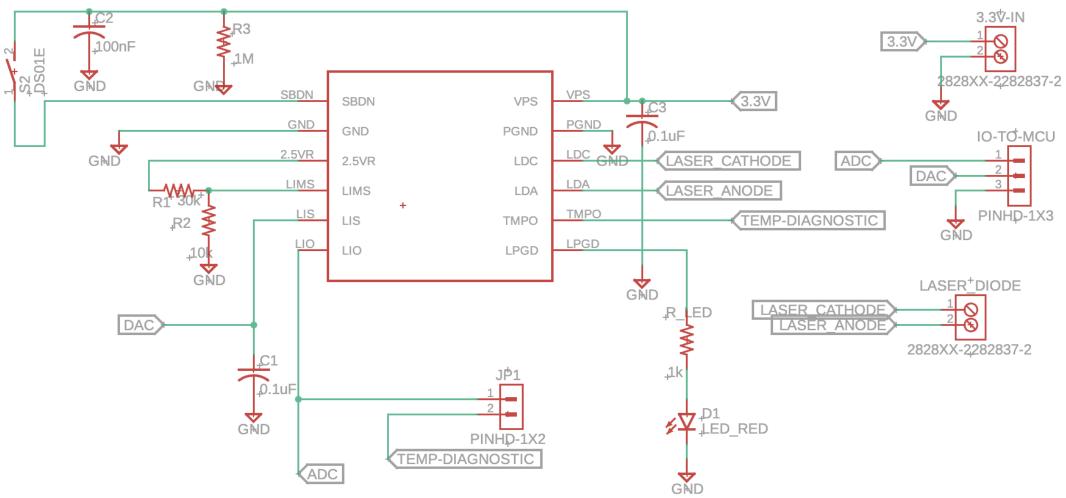








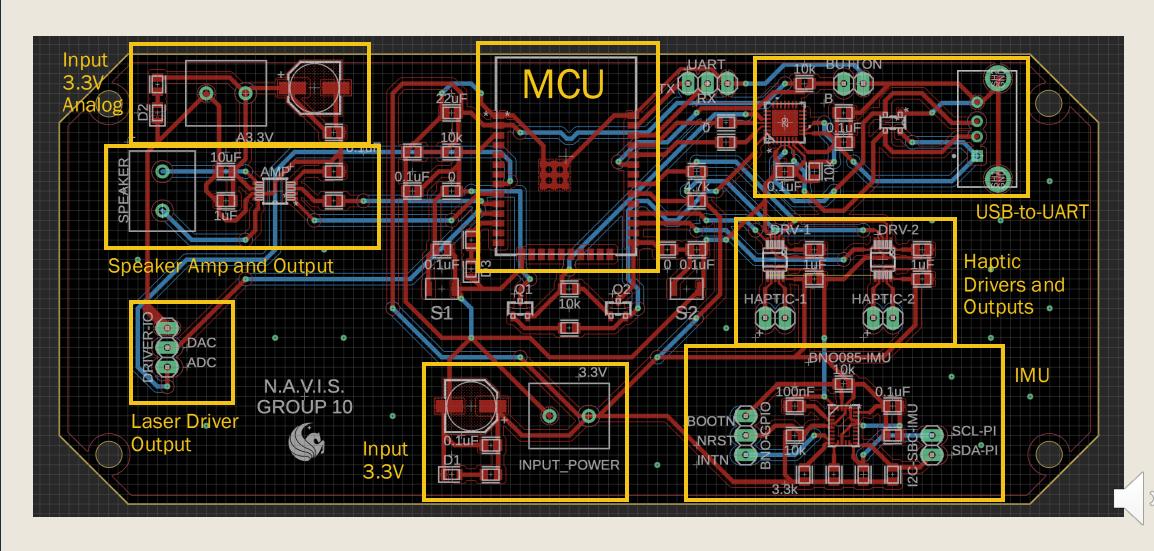

## Switching Regulator Schematic





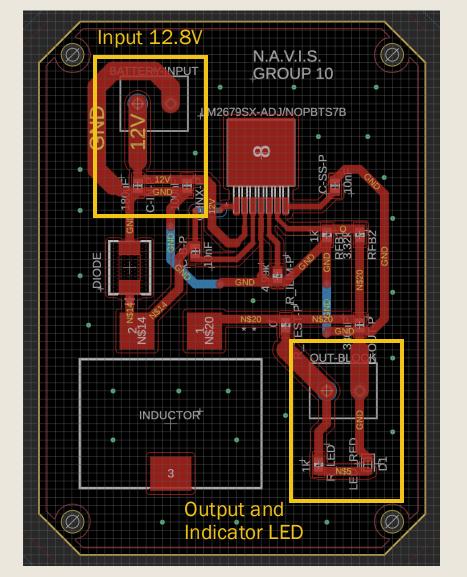



### Optical Driver Board Schematic



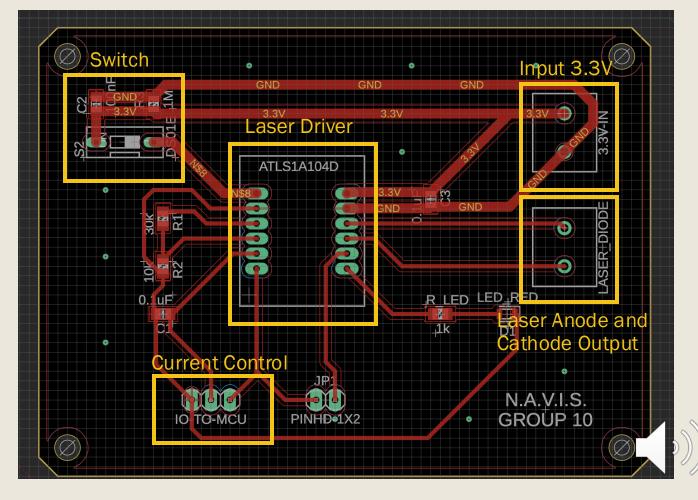






#### **PCB** Layouts

#### **Main Board**

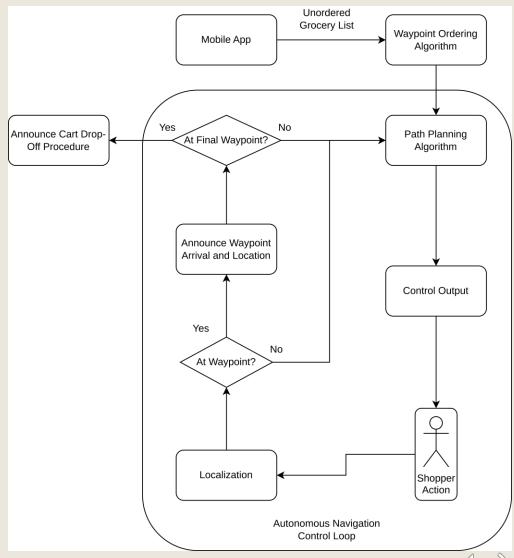



#### **PCB** Layouts

#### **Switching Regulator**

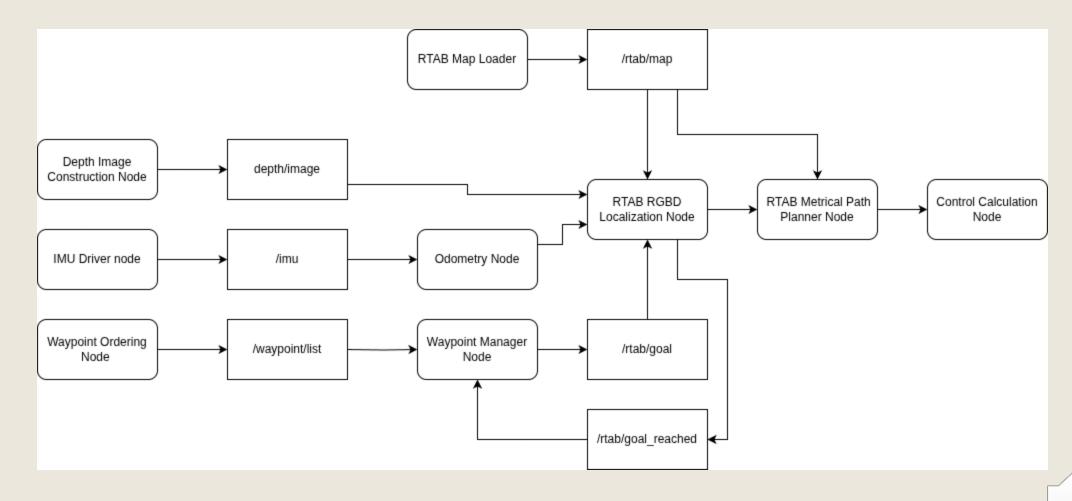





#### Laser Diode Driver

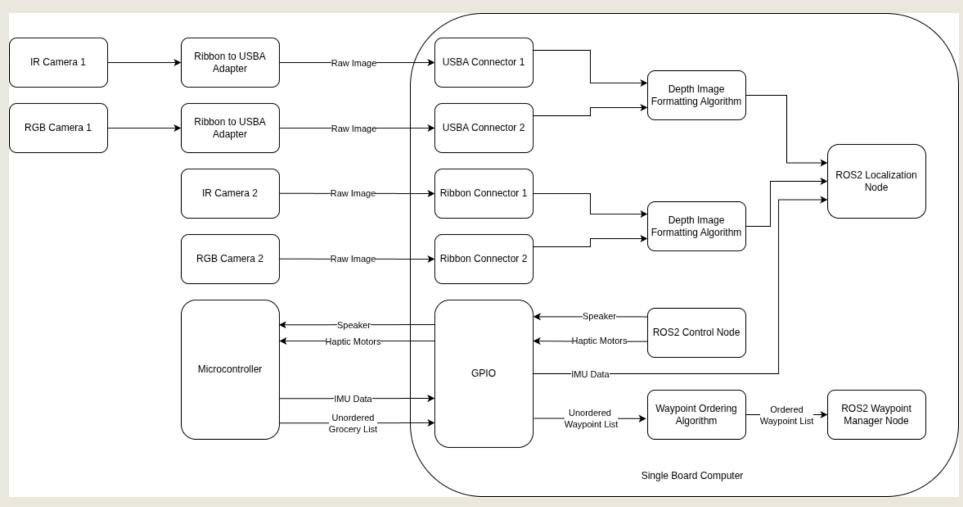


## SOFTWARE DESIGN




# Autonomous Navigation Flowchart










## SBC IO Block Diagram

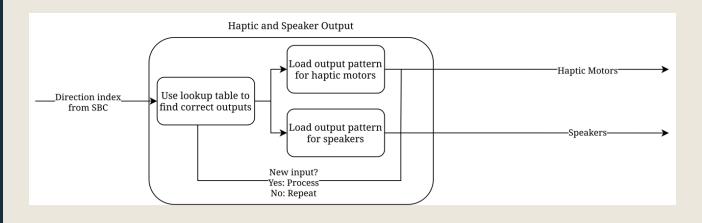


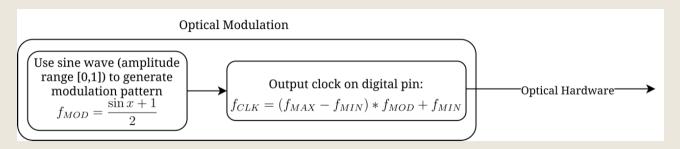




## Microcontroller Programs

#### ESP32

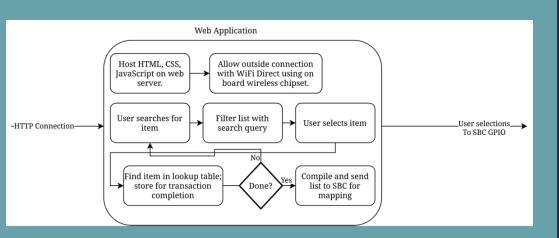

Use stored sounds and haptic sequences to cue user after SBC GPIO input with the command

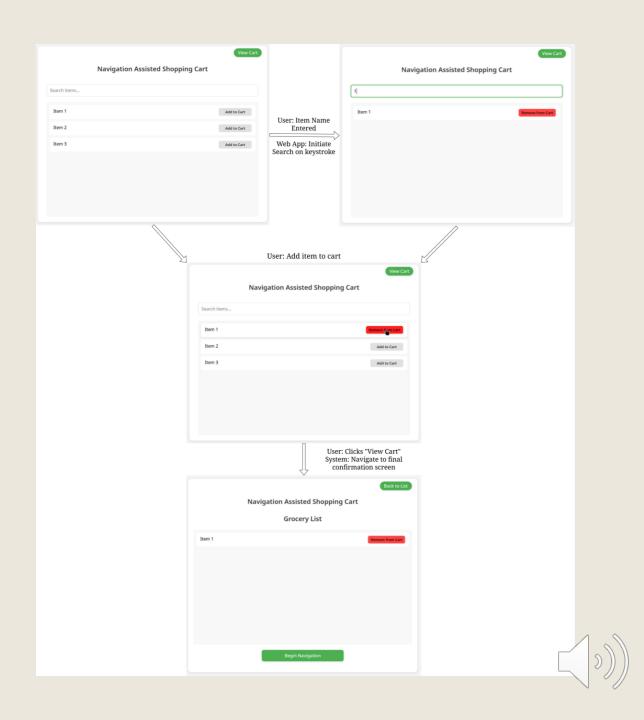

Modulate frequency of optical/laser output hardware

Output formatted IMU data to SBC GPIO

Host web application for user to input grocery list. Output to SBC for use in mapping










### Microcontroller Programs – Web App Overview & Ul






# SOFTWARE COMPARISON AND SELECTION

#### Wireless Communication

Wireless communications leveraged between the user's device and the system as an input peripheral

WiFi should have **high availability** in stores and other locations where the product will be used.



- **WiFi** (IEEE 802.11)
  - Grocery List Input
  - Web app <-> Pi & MCU
- Bluetooth NOT USED
  - Lower bandwidth
  - Slower
  - Advantage: Point-to-Point Connections
    - WiFi has WiFi Direct for this problem



# Wired Communication

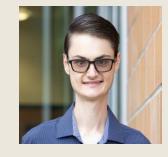
Relying on Wired protocols for communication between components – higher reliability

Popular and standardized communications protocols are used instead of novel implementations because of support and ease of use.



#### USB

- Cameras -> Raspberry Pi
- 12C
  - IMU <-> Raspberry Pi
  - Haptics & Audio <-> MCU
- UART
  - Raspberry Pi <-> MCU




### **Control Outputs**

#### Selection: Haptic + Speaker

- Gives user the most agency
- Extremely easy to implement as opposed to autonomous motor control or full visualization

| Name                  | Ease of<br>Integration | Advantages                                                                                  | Disadvantages                                                                                     |
|-----------------------|------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Haptic                | Easy                   | Can be tuned to be extremely intuitive  Very easy to implement  Gives user agency           | Not extremely robust, allows for collision risks                                                  |
| Speaker               | Medium                 | Easy to give detailed instructions without having to visualize or make motor control scheme | A bit harder to implement than the buzzer                                                         |
| Video Indication      | Very Hard              | Can be extremely intuitive  Gives user agency  Customizable                                 | Extremely difficult to design UI and implement software  Non-welcoming of completely blind people |
| Autonomous<br>Control | Very Hard              | Extremely robust                                                                            | Extremely hard to develop                                                                         |





#### Inter-Process Communication

#### Selection: DDS

- ROS2 runs DDS under the hood
- Provides a lot of needed infrastructure



| DDS<br>Implementation | Latency  | Scalability | Ease of Implementation |
|-----------------------|----------|-------------|------------------------|
| DDS                   | Moderate | High        | Moderate               |
| MQTT                  | High     | Moderate    | Moderate               |
| Custom Rust/C++       | Low      | Low         | Difficult              |



## SLAM Implementation Comparison

Selection: RTAB-Map

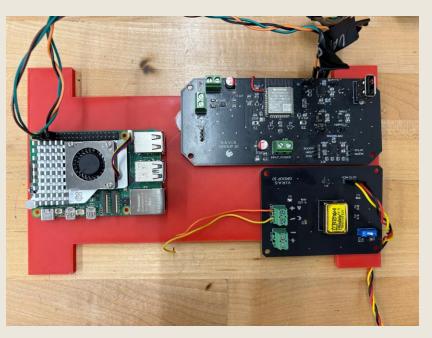
- High amount of infrastructure for stereo-vision-based SLAM
- Holds its own planner, so no need for Nav2 interfacing

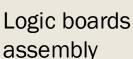


| SLAM<br>Implementation | Available<br>Infrastructure | ASV Interface<br>Quality | NAV2 Interface<br>Quality | Available<br>Documentation |
|------------------------|-----------------------------|--------------------------|---------------------------|----------------------------|
| RTAB-Map               | High                        | High                     | Moderate                  | High                       |
| Slam-toolbox           | High                        | Low                      | High                      | High                       |
| ORB3_SLAM              | Moderate                    | High                     | Low                       | Low                        |



# TESTING AND INTEGRATION

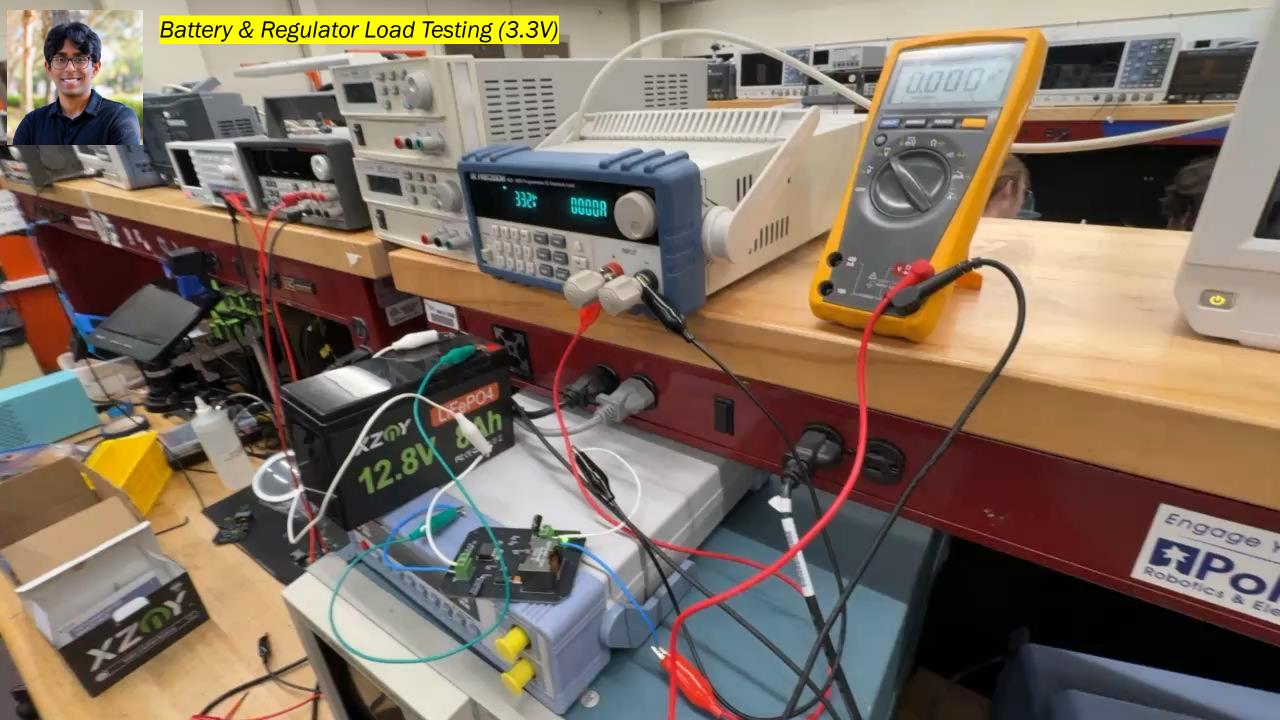

#### PCB Testing

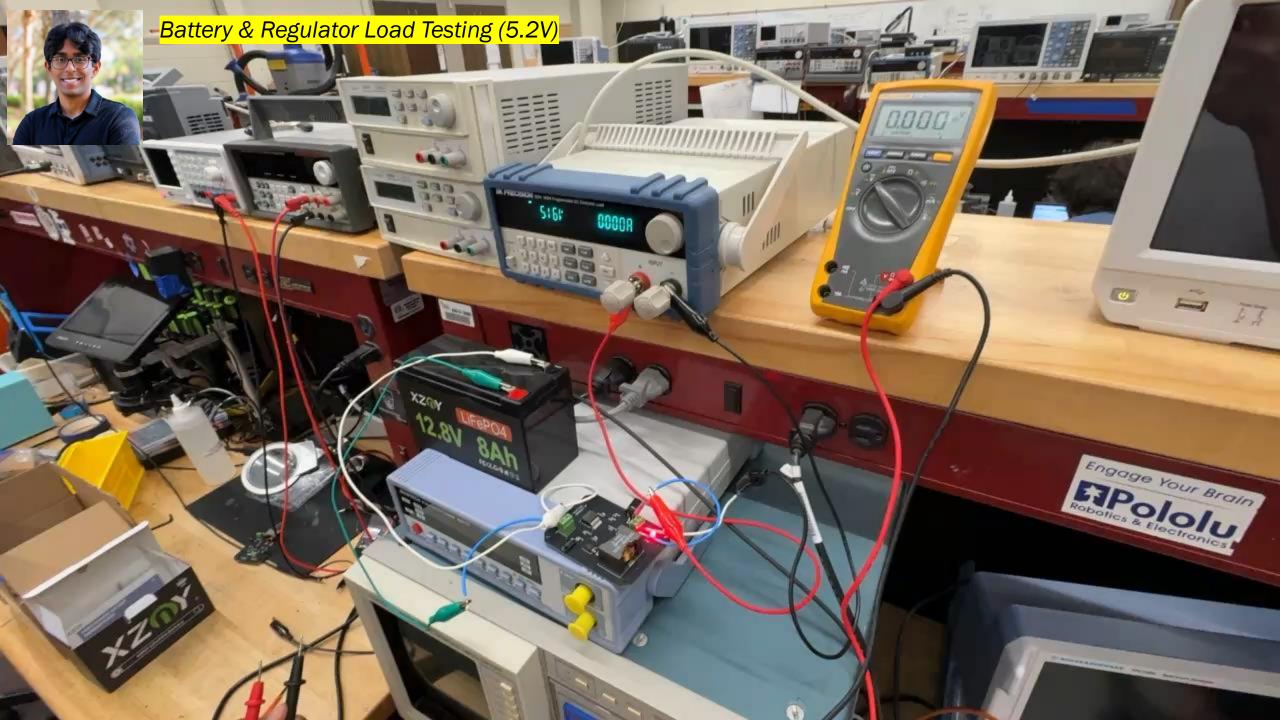

#### Successes:

- Switching regulators successfully power all components – load tested.
- Proper booting and peripheral control on main board
- Laser driver drives various diode parts

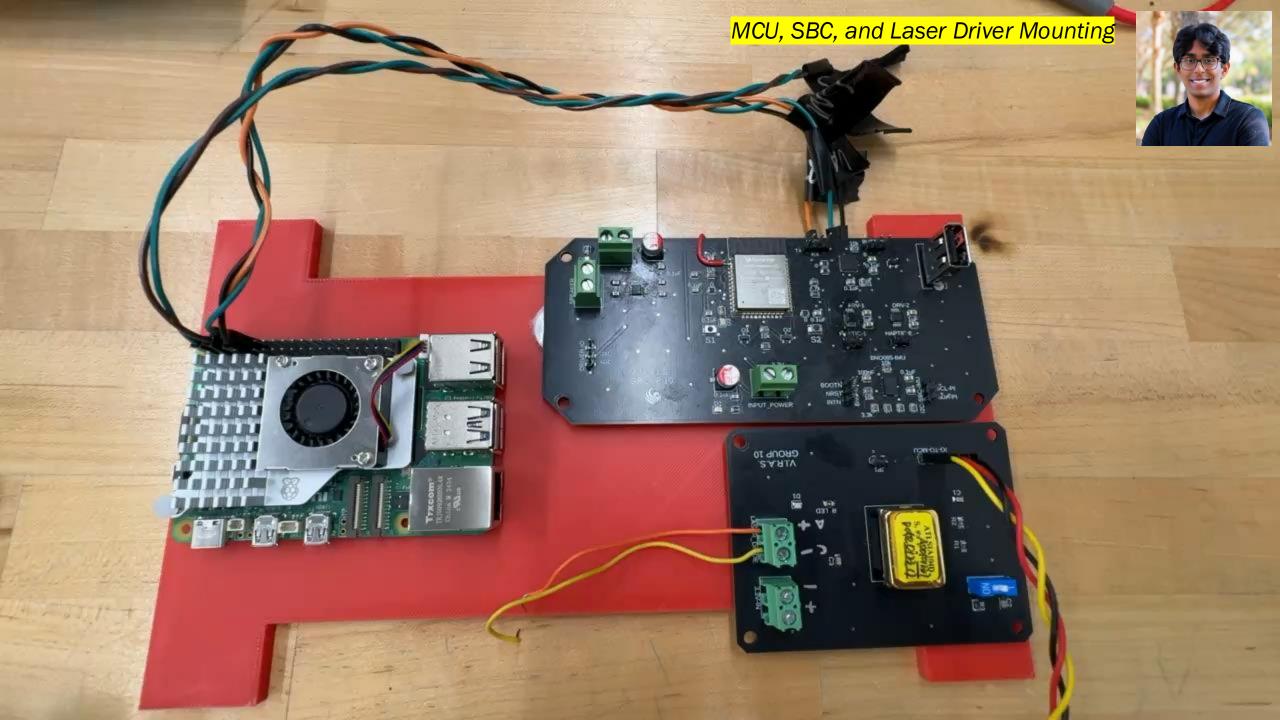
#### Challenges:

- Incorrect footprint for electrolytic capacitor -Soldered matching electrolytic capacitor on pads – results in a successful output.
- Incorrect filtering capacitor orientation on speaker – Ordered v2 with correct orientation and additional buffer capacitors
- Haptic motors reduced from 4 to 2



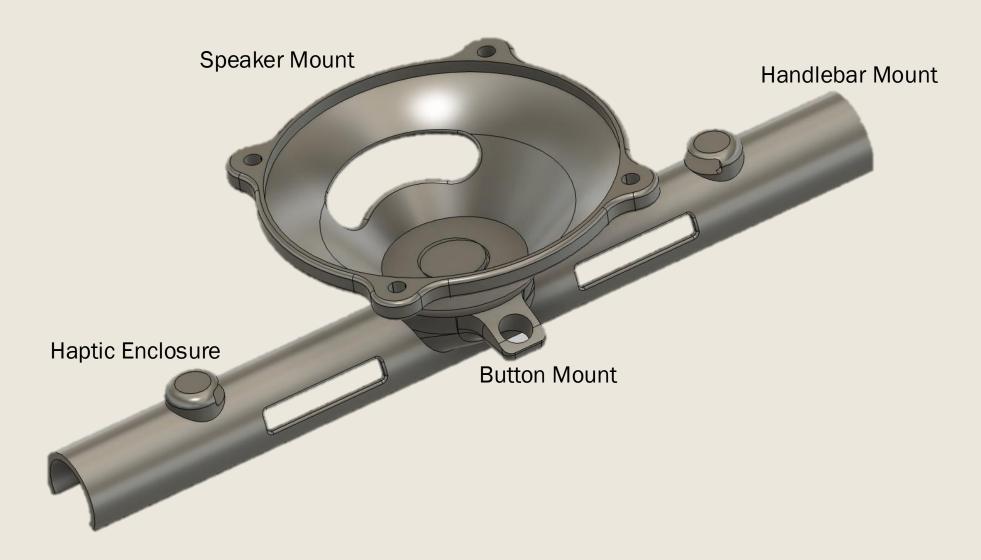







Power boards assembly



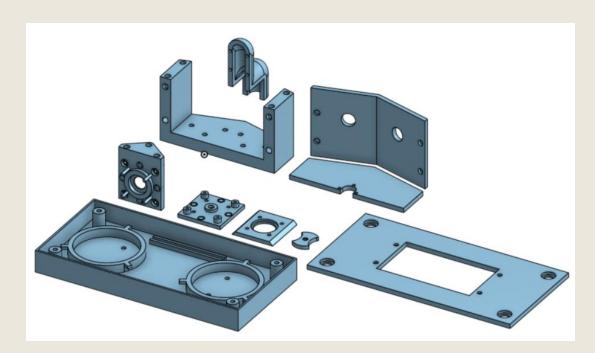


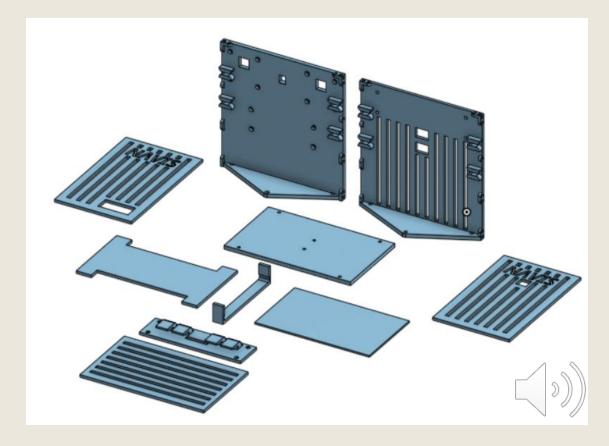







## Peripherals Housing






## Electronics and Laser Housing







#### Final Enclosure





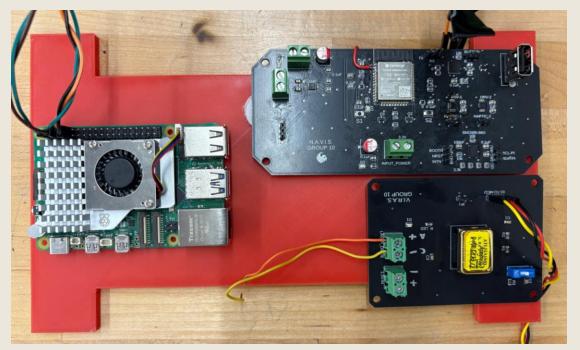
















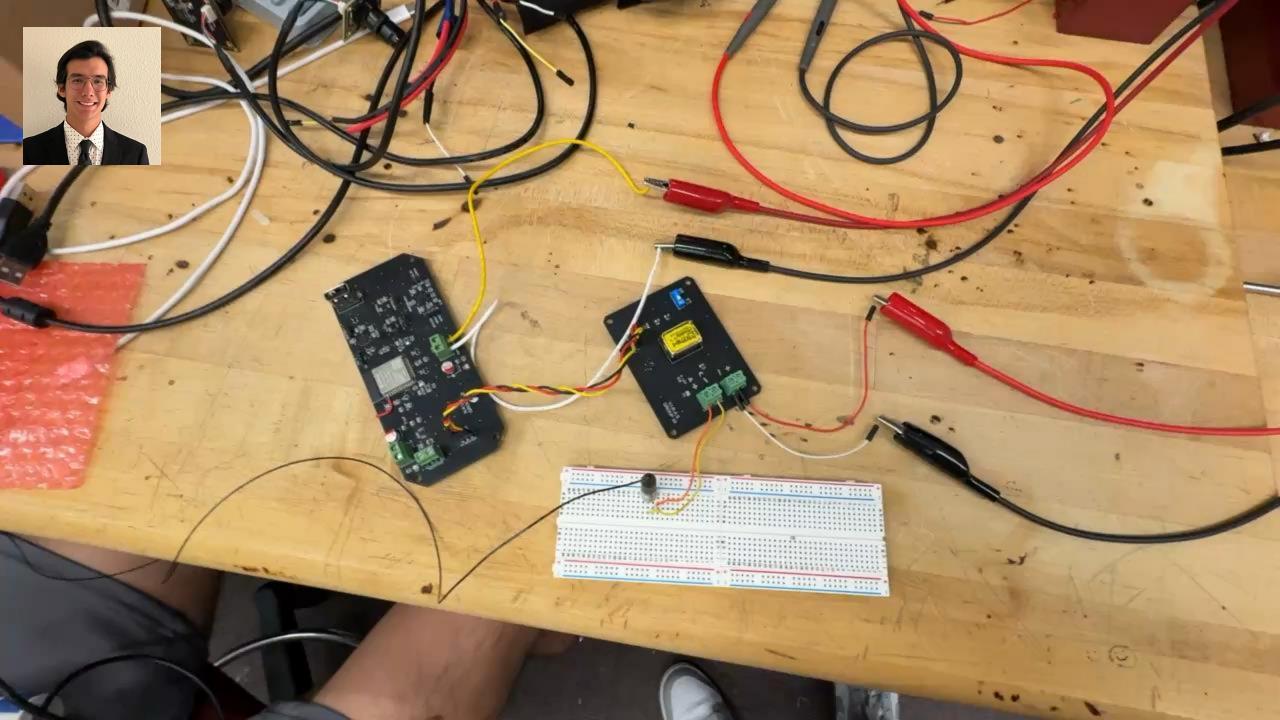










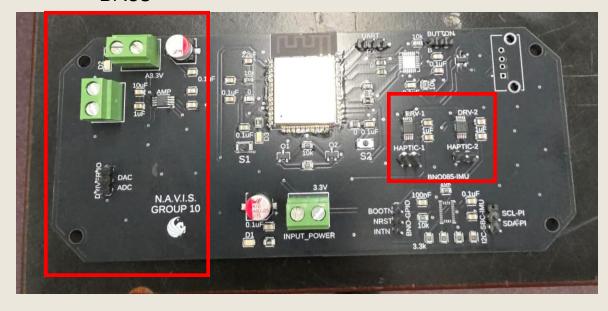


#### **Optical Testing**

- Tested different methods for lens and fiber alignment, where a spring-loaded contraption to adjust lens distance to fiber was 3D printed.
- Coupling loss calculations were made to determine if the use of connectors between fibers is enough instead of splicing fibers.
- Wavelength drift based on temperature changes on the diode was made to determine splitter and bandpass filter bandwidth
- Although focal lens to back surface of lens was found in the Zemax simulation of the lens, a movable mount with a sCMOS camera was still made to visualize diameter of beam when different focal distances where used.







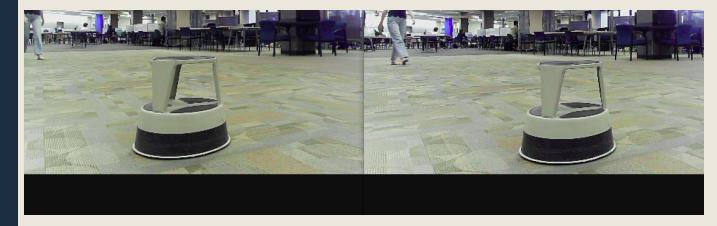


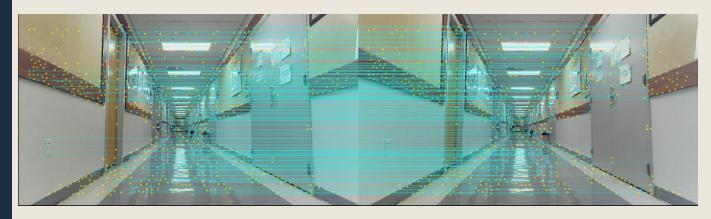

#### Electrical Component Testing – Pre-Integration

- Assembled main board with MCU and peripherals.
- Tested all programs at once with ifdef debug flags inside code.
- Removed 2 haptic motor drivers, leaving two as one-hot on the I2C bus.
- Challenges:
  - A few DOA components and noisy outputs solved with replacements and capacitor power filtering
  - DMA DAC output interfering with laser driver current set DAC solved with separate stereo channel for laser current set.



#### **DACs**

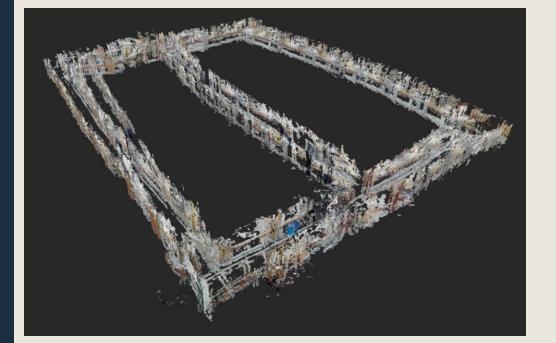



#### Software Testing -SBC (Active Stereo-vision & Localization)

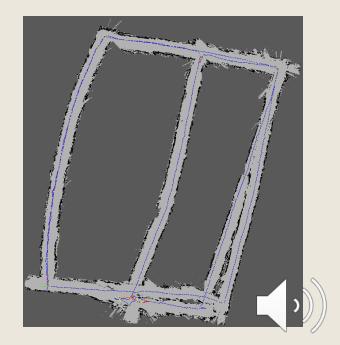
- Designed custom synchronized OpenCV Gstreamer Driver
- 640x360p, 30fps, <5ms sync
- Fed synchronized images into RTAB-Map Stereo-Odometry algorithm
- Fused IMU and Stereo-Odometry sources using custom-tuned Kalman Filter
- Challenge
  - Standard coordinate systems for camera outputs and ROS2 are different
  - Manually parsed and tuned 70+ feature identification and odometry parameters









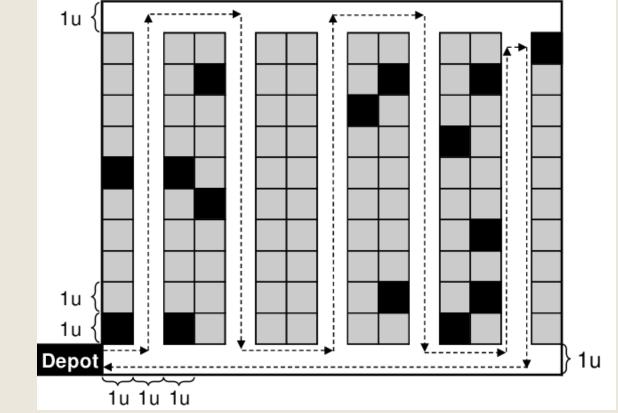


# Software Testing - SBC (SLAM)

- RTAB-Map Stereo-SLAM was utilized to develop the necessary 2D Occupancy Grid
- Challenges included:
  - SLAM parameter tuning
  - Overheating of Raspberry Pi Solved with heatsink, fan, and more airflow.
- Pictured: Point cloud map, Occupancy Grid Map,
   CREOL 2nd floor







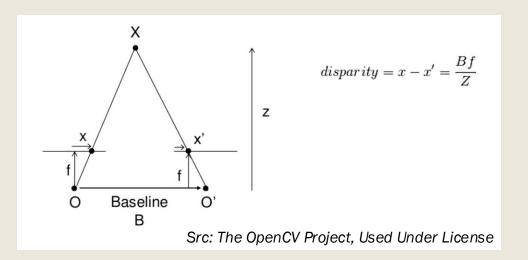



## Software Testing - SBC (Navigation)

- Custom S-Shape Routing Algorithm
   Implemented (1)
  - Dynamic Planning was implemented, but was found to be to computationally expensive
- Control Action Calculations
  - 4 logic branches based off waypoint type to for speaker output
  - Custom buzzer intensity calculation (2)
- Challenges:
  - After finding out dynamic planning was too expensive, custom routing, control, and obstacle detection algorithms had to be developed



1.




$$X = e^{\frac{255}{\pi}(\text{cur\_yaw-desired\_yaw})}$$

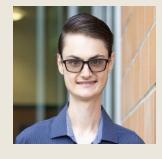


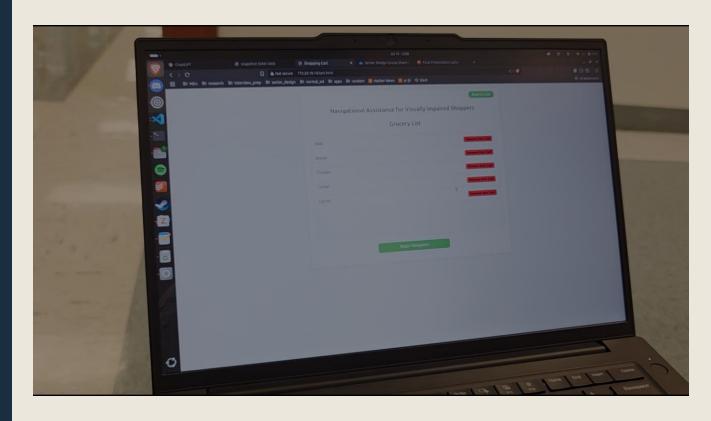
#### Software Testing -SBC (Obstacle Detection)


- Depth Calculations from a Disparity Map
- Challenges:
  - Noise 5x5 Nearest Neighbor Blur
  - Interference from Ground and Walls –
     Implemented Region of Interest (Rol)
  - Calculations Heavy Used a Lighter
     Approximation






```
[1752943502.995696885] [obstacle_detector]: No significant obstacle found.
[1752943503.142419114] [obstacle_detector]: No significant obstacle found.
[1752943503.302908448] [obstacle_detector]: No significant obstacle found.
[1752943503.367269084] [obstacle_detector]: No significant obstacle found.
[1752943503.459926496] [obstacle_detector]: No significant obstacle found.
[1752943503.704977897] [obstacle_detector]: No significant obstacle found.
[1752943503.856920027] [obstacle_detector]: No significant obstacle found.
[1752943503.928772964] [obstacle_detector]: No significant obstacle found.
[1752943521.876300500] [obstacle_detector]: Obstacle detected at 1.67 m, setting flag and publishing.
[1752943527.955906629] [obstacle_detector]: No significant obstacle found.
[1752943527.956892345] [obstacle_detector]: Obstacle flag reset.
```

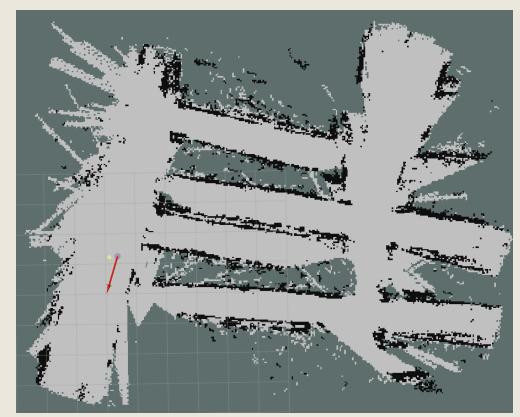





# MCU <-> SBC Integration

- Tested UART between MCU-SBC for grocery item selection and peripheral outputs
  - UART was default routed to Bluetooth
  - Certain commands not received correctly.
- Tested web app with full system
  - WiFi Hotspot not allowing local device access – Fixed with WAP on SBC



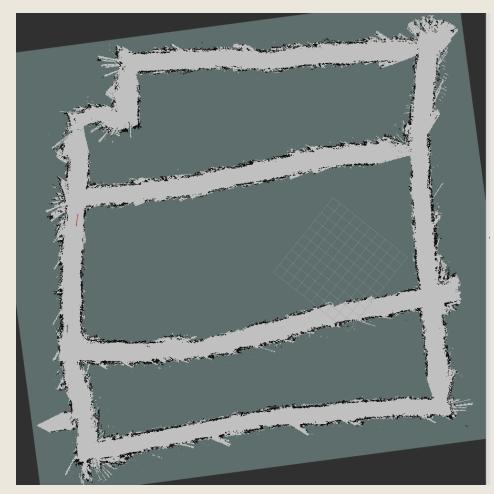





# Complete System Testing - Library

- Original plan was to map at library due to:
  - Accessible aisles
  - Originally believed larger maps would cause irredeemable odometry drift
- Challenges experienced:
  - A lot of foot traffic
  - Inconsistent lighting
  - Narrow and long aisles -> aisles merging during mapping even with very slight odometry drift








# Complete System Testing - CREOL


- After realizing the second floor of CREOL was organized in consistent –length aisles, we tested and got better results
- Benefits:
  - Sparser and wider aisles allow for more consistent SLAM loop closures
  - Less foot traffic
  - Controllable lighting conditions











| Components / Subsystem                     | Target Price |
|--------------------------------------------|--------------|
| System Enclosure                           | \$50         |
| Optics (Laser, Driver, Fiber, and Cameras) | \$750        |
| Electrical (excluding PCBs and SBC)        | \$300        |
| PCBs                                       | \$175        |
| Single Board Computer                      | \$125        |
| Total                                      | \$1400       |







| Team Member       | Responsibilities                                    |
|-------------------|-----------------------------------------------------|
| Matias Barzallo   | Active Stereo Vision Optical Design and Development |
|                   | Laser Diode Electrical Integration                  |
|                   | CMOS Camera Electrical Integration                  |
| Michael Castiglia | Project Manager and Administrative Content          |
|                   | Microcontroller Software and Integration            |
|                   | Sensor Driver and Integration                       |
|                   | Web App Design and Development                      |
|                   | High Brain - Low Brain Board Communications         |
| Aden McKinney     | Autonomous Navigation Stack Design and Development  |
|                   | Control Output Software Development                 |
| Pavan Senthil     | Power System Design and Implementation              |
|                   | PCB Design                                          |
|                   | Peripheral Hardware Integration                     |
|                   | CAD and Housing Development                         |

## THANK YOU!