PoolWatch

Optical Chlorine and Phosphate Concentration Analyzer with Particle Imaging for Classification

Group 4

Austin Naugle Dylan Hughes Jason Ser Ning Dim

Team Members

Ning Dim

Computer Engineer

Dylan Hughes

Computer Engineer

Austin Naugle

Photonic Science and Engineering

Jason Ser

Photonic Science and Engineering

- Many people own pools across the United States
- Pool maintenances is a time consuming process
- A monitoring system could improve the overall health of a pool and even automate several aspects of its maintenance

Hardware Goals

Goals:

- Interchangeable PCB Parts
- Temperature Sensor
- Chlorine Sensor
- Phosphate Sensor
- Particulate Sensor
- Wi-Fi Communications
- Monitors Device Health
- Water Pump
- Debug Panel
- A Long-Lasting Power Supply

- Automatic Chemical Inputs
- Automatic Waste Disposal
- Keyboard / Input System
- Display System

Software Goals

Goals:

- 2-Way Communication between Device & Server
- Account System
- Notification System
- Report Storage
- Containerized
- Displays Results

- Secure Commination
- Weather Monitoring System
- Phone Compatible

Optical Goals

Goals:

- Orthophosphate Sensor
- Chlorine Sensor
- Particulate Imaging

- pH Sensor
- Bromine Sensor
- Cyanuric Acid Sensor

Mechanical Goals

Goals:

- Reasonable Sized
- Supports Pumping Water

- Water Resistant
- Waste Container
- Heat Resistant

Hardware Objectives

- A power supply that lasts at least a month while running tests at least once a day.
- A pump system to draw pool water into the two test cuvettes, where it will mix with preloaded reagents in each cuvette.
- The device will include status LEDs for each major system and these LEDs will remain off until a switch is flipped.
- Sensors, regulators, and other major systems should be interchangeable to allow for easy maintenance on the device.
- The MCU will need to be able to communicate with all photodiodes in the system.
- The device's MCU will need to be capable of completing every test calculation within a small time interval.
- The MCU will require Wi-Fi capabilities in order to communicate with the web server.

- The system will need to have a web server on a cloud provider
- The system will require a database to store user credentials and data collected from the device
- The web server will need a front end website that will allow the user to communicate with the device
- The website will allow the user to create a new account and login to that account.
- The website will allow the user to add devices to their account based off the device's serial number
- The website will display the device's current battery charge, time from last test, and if any non-power systems are down.
- The website will display the results from the free chlorine detection system, phosphate detection system, depth test, and temperature test, with timestamps.
- The website will display the results of the previous tests.
- The website will allow the user to change the sampling rate of the device.
- The website will allow the user to request tests to be run on the device.
- The website will allow the user to change how long back tests will be stored.
- Measurements on the website will be displayed in common American units.
- The website will have a domain name to facilitate easy access.

- The website will allow the user to set up automatic notifications for email and other servers, based on thresholds being crossed, such as the depth drops below 6 feet.
- The web server will need to be fully containerized to allow for immediate deployment on other computers.
- The webserver will need to be hosted on a kubernetes cluster and configurable using environment variables to allow modification in future deployments. The device will generate HTTP messages to the web server to facilitate outbound communication.
- The device will be able to parse HTTP messages to facilitate inbound messages.
- The device will control when a test is run and will be able to compute the outcome of the test into common American units.
- The device will manage the water drawing system.
- The device will listen for button presses that indicate a test to be performed.
- The device will monitor the battery level and update the site on the charge.
- The device will have a hard coded serial number.

- Design a simple optical system that will detect phosphate and chlorine concentrations in a micro-cuvette.
- Design a magnifying lens system using singlet lenses with a camera to image particulate.
- Use Achromatic lenses to minimize comatic aberration in order to capture a larger field of view.
- Use a multi lens system to minimize spherical aberration and collimate the light.
- Optimize the alignment so the optical path length increases.

Mechanical Objectives

- The device will fit within a non disruptive space by the side of the pool.
- The device will support drawing operations
- Accessing components of the device and changing them out will be manageable with a common multitool, such as a Leatherman.
- The device will have a debug section displaying the LEDs indicating the working systems.
- The device will have hand changeable molybdophosphoric acid and chlorine testing chambers.
- The device's power source will be hand changeable if the power source is a battery.
- The device will have an on switch and a debug switch section.

Engineering Specifications 1

Component(s)	Parameter	Specification
Particulate Imager	Resolution	≤ 10 μm
Chlorine mass Concentration	Accuracy	± 0.60 ppm
Thermometer	Accuracy	± 0.4 °F
Particulate Imager	Field of View	5 mm x 5 mm
Chlorine mass Concentration	Measurement Range	≥ 0.30 ppm
Chlorine LED Emission	Wavelength Range	515 nm ± 2 nm
Chlorine Optical Narrow Bandpass Filter	Central Wavelength	515 nm
Chlorine Concentration Analysis	Response Time	≤ 1 minutes 30 seconds
Phosphate Mass Concentration	Accuracy	± 0.50 ppm

Specification

< 15 seconds

 ≤ 18 " x 12" x

< 24 Watts

 ≤ 1 Watt

 \geq 30 Days

< \$1,500

14

Parameter

Dimensions

Battery Life

Cost

Response Time

Max Power Consumption

Average Power Consumption

Thermometer

Container

Power Unit

Power Unit

System

System

Engine	mcanc	JIIS Z	
Component(s)	Parameter	Specification	Component(s)

Wavelength Range

Central Wavelength

Response Time

Response Time

Transmittance

Allowable Volume Content

Capacity

Liigiiie	opec.	manican)112 Z

Component(s) Phosphate Mass Accuracy

Concentration Phosphate Mass

Concentration

Bandpass Filter

Particulate Imager

UV Quartz Cuvette

UV Quartz Cuvette

Analysis

Battery

Phosphate LED Emission

Phosphate Optical Narrow

Phosphate Concentration

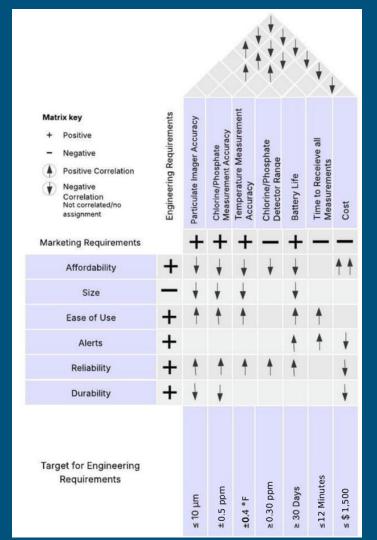
Measurement Range \geq 0.30 ppm

 ± 0.05 ppm

 $880 \text{ nm} \pm 2 \text{ nm}$

880 nm

< 5 Minutes

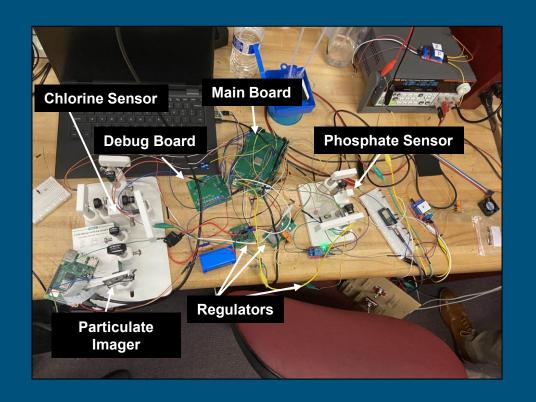

> 5000 mAh

< 1.5 minute

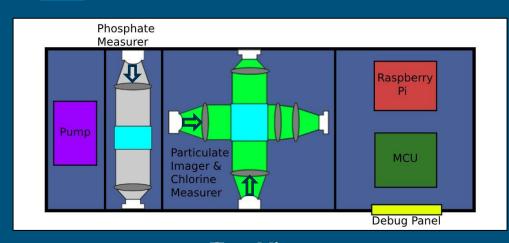
90%

 \leq 3.5 mL

House of Quality



Poolwatch Device



Main Housing

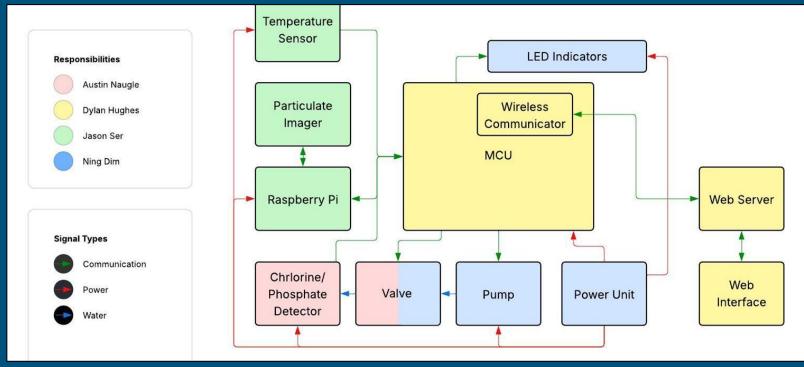
Debug Panel (Status LED and Power Button)

Not to Scale

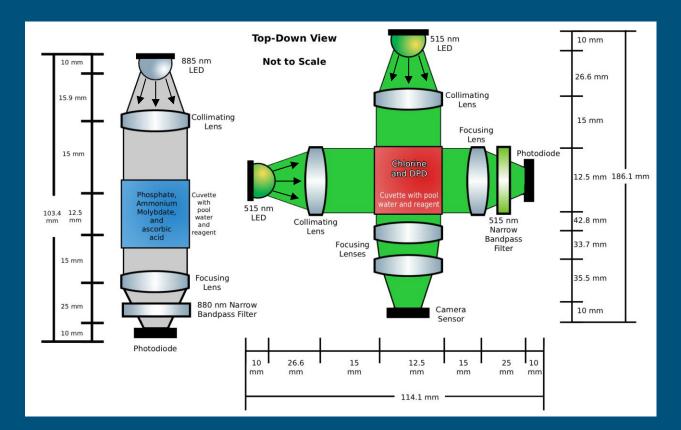
Pump Tube

Top View

Isometric View



Hardware System



Optical Design Illustration

Features	Arduino Uno Rev3	Arduino Uno R4 WiFi	Adafruit HUZZAH32 ESP32
Operating	5V operating,	5V operating, 6-24	3.0-3.3 V
Voltage	7-12 V (rec'd)	V (rec'd)	
Chip	Atmega328P	Renesas RA4M1	Tensilica LX6
Memory	32 kB Flash,	256 kB Flash, 36	4 MB Flash ,520
	2KB SRAM	kB SRAM	kB SRAM
Interfaces	I2C, SPI,	I2C, SPI, UART,	3 UART, 3 SPI,
	UART, USB	CAN, DAC	2I2C, 2 DAC, 12
			ADC
GPIO pins	14	14	21
Wi-Fi	No	Yes	Yes

We chose the ESP32 because it has built-in Wi-Fi, offers high performance at a low cost, has plenty of memory, and provides the I²C and ADC peripherals required by our system.

Image Processor Selection

Raspberry Pi 5	Raspberry Pi 4	Raspberry Pi Zero
- Cost + + Processing Power + Connection Power Consumption	+ Cost + Processing Power + Connection - Power Consumption	++ Cost Processing Power - Connection + Power Consumption

Features	Gikfun Peristaltic	Kamoer Peristaltic	Micro Peristaltic		
	Pump	Pump	Pump		
Voltage	12 V	12 V	6V-12V		
Requirement					
Max Current	0.220 A	0.42A	0.5A		
Flow Rate	max 0.5 L/min	0.7 L/min	30mL/min-		
			100mL/min		
Max Head Height	5m (16.5 ft)	5m (16.5 ft)	N/A (reviews say 5-		
			6.5ft)		
Tubing	2mm ID and 4mm	3mm ID and 5mm	2.5mm ID and		
Dimensions	OD	OD	4.5mm OD		
Cost	\$11.98 (Amazon)	\$10 (Amazon)	\$1.40(Aliexpress)		

We chose a peristaltic pump because it's able to deliver fluid into both cuvettes at a low speed. This type of pump is also easy to disassemble and because the fluid only touches the inner tubing and not the pump's internal mechanisms, it prevents contamination and helps ensure more accurate test results.

Features	AOMG 12V 1/4"	Beduan 12V 1/4"	Adafruit Solenoid
	Solenoid Valve	Inlet Solenoid	Valve
		Valve	
Input Voltage	12V	12V	12 V
Current Load	0.4A	460mA	320 mA
Min. Operating	0.02Mpa	0.02Mpa	0.02Mpa
Pressure			
Dimensions	$2.25 \times 0.8 \times 1.25$	8.46 x 2.36 x 1.34	3.3 x 1.69x 2.24 inches
	inches	inches	
Cost	\$13.79	\$9.57	\$6.95

We chose solenoid valves to dispense our reagents because they can open and close quickly, allowing for accurate and controlled reagent delivery. Since they do not require tubing, they provide a simple, reliable solution with minimal parts.

Features	DC Motor	PC Fan	Pancake DC Motor
Sourcing and	High	High	Low
Integration	-reuse old parts	-reuse old	-limited options
	-bulkier	parts	-plug and play
	-customization	-plug and play	-harder to obtain
	needed	-wide variety	
Cost	Low	Low	Higher

We chose a brushless PC fan because of its small size, low cost, and ability to be customized. The blades can be removed or trimmed to help it fit into tighter spaces. It integrates easily into the pre-built system and requires very few additional parts.

Features	Electrochemical (EMR)	Solid-State (SSR)
Switching Mechanism	Mechanical Contact +coil	Semiconductor
Response Time	Slower	Fast
Moving Parts	Yes	No
Power Consumption	High(coil)	Lower (optical trigger)
Electrical Noise	Higher; mechanical	Lower; silent operation
	clicking	
Lifespan	Shorter; mechanical	Longer; no moving parts
	wear	
Cost	Generally lower	Generally Higher

We used electromechanical relays by integrating prebuilt relay modules into the system This option was ideal because the modules provides visual and audio indicators showing when each relay is activated, which helps with troubleshooting and testing.

Light Emitting Diode (LED) Comparison Chart									
Part No.	Cost	Peak Wavelength (nm)	Output Power (mW)	In stock?					
WP7113ZGC	\$9.68	515	3.23	✓					
XSDG43MB	\$8.35	515	✓						
2231507	\$15.11	515	2.76	✓					

Pla	Plano-Convex Collimating Lens Comparison Chart						Plano-Convex Collimating Lens Comparison Chart Plano-Convex Focusing Lens Comparison Chart						
Part No.	Total Cost	Material	AR Coatings	Focal length (mm)	Optic Diameter (in)	In stock?	Part No.	Total Cost	Material	AR Coatings	Focal length (mm)	Optic Diameter (in)	In stock?
LA1289- AB	\$41.11	N-BK7	AB	30	0.5	✓	LA1560- AB	\$56.07	N-BK7	AB	25	0.5	✓
LA1608- AB	\$66.50	N-BK7	AB	75	1	✓	LA1560- AB	\$61.52	N-BK7	AB	25	0.5	✓
LA1422- AB	\$70.26	N-BK7	AB	40	1	✓	LA1540- AB	\$60.25	N-BK7	AB	15	0.5	X

Photodiodes Comparison Chart					
Part No.	Total Cost Responsivity NEP In stood (@ 515 nm)				
S1223-01	\$28.70	0.32-0.34	1.3 10-14	✓	
FDS1010	\$86.18	0.20-0.22	2.1 10-13	✓	
S5973	\$29.63	0.26-0.28	1.1 10-15	√	

Light Emitting Diode (LED) Comparison Chart					
Part No.	Cost Dominant Wavelength (nm) Output Power (mW)				
XTHI30W	\$8.59	880	8.83	✓	
XTHI12BF	\$8.29	880	2.29	✓	
XZTHI54W	\$8.88	880	6.75	✓	

Plano-Convex Collimating Lens Comparison Chart					Plano-Co	nvex Focusin	g Lens Com	parison (Chart				
Part No.	Total Cost	Material	AR Coatings	Focal length (mm)	Optic Diameter (in)	In stock?	Part No.	Total Cost	Material	AR Coatings	Focal length (mm)	Optic Diameter (in)	In stock?
LA1074-B	\$58.1 1	N-BK7	В	20	0.5	✓	LA1560-B	\$56.07	N-BK7	В	25	0.5	✓
LA1608- AB	\$66.5 0	N-BK7	AB	75	1	✓	LA1560- AB	\$61.52	N-BK7	AB	25	0.5	√
LA1422- AB	\$70.2 6	N-BK7	AB	40	1	✓	LA1540- AB	\$60.25	N-BK7	AB	15	0.5	X

Photodiodes Comparison Chart					
Part No.	Total Cost	Responsivity (@ 880 nm)	NEP (W/Hz ^{1/2})	In stock?	
S1223-01	\$28.70	0.52-0.54	1.3 10-14	✓	
FD11A	\$52.94	0.53-0.54	6.80 10-16	✓	
FDS015	\$150.72	0.31-0.32	8.60 10 ⁻¹⁵	✓	

Thorlabs LA1289	Thorlabs LB1258	Thorlabs LA1289-AB
+ Cost + Aberration - Transmission	+ Cost - Aberration - Transmission	Cost+ Aberration+ Transmission

LED Collimating Lens

Newport PAC025	Thorlabs AC127-050-A	Newport PAC024AR.14
- Cost	+ Cost	Cost
+ Aberration	Aberration	+ Aberration
- Transmission	+ Transmission	+ Transmission

Front Lens

Newport PAC040	Thorlabs AC254-050-A	Thorlabs AC254-050-AB
+ Cost	- Cost	Cost
+ Aberration	- Aberration	- Aberration
- Transmission	+ Transmission	+ + Transmission

Rear Lens

CAM-IMX296Mono-GS	Arducam OV9281 1MP Monochrome Global Shutter Camera	Arducam 5MP OV5647 Camera Module
+ + Sensor Size + Global Shutter + Resolution + Monochrome - Documentation - Cost - Pixel Size	+ Documentation + Pixel Size + Global Shutter + Monochrome - Resolution - Cost - Sensor Size	+ + Cost + + Resolution + + Pixel Size + Sensor Size + Documentation Rolling Shutter Color

	6	0	
9			
	1		An .

Design	MCU Pins	Component Spread	Components
BJT	0-1	3	7
MOSFET	0-1	4	8
MCU	1-2	2	2

Temperature Sensor Selection

Waterproof DS18B20	LM35DZ	RTD PT100
++ Connectivity + Accuracy - Cost	+ Connectivity - Accuracy + + Cost	Connectivity + + Accuracy Cost

Power Distribution Table

	Voltage(V)	Current (mA)	Power
MCU	3.3V	250mA	0.825 W
Raspberry Pi 4 Model B	5.2V	250mA/400mA(startup)	2.08 W (max)
TLV3541IDBVR op-Amp(x4)	+ /- 5V	5mA	0.05 W
150080BS75000 LEDs (x8)	3.3V	0.2mA	0.00066 W
WP7113ZGC /XTHI30W LEDs	3.3V	20mA	0.066 W
Water Pump	12V	223mA	2.676 W
Solenoid Valves(x2)	12V	500mA	6.60 W
Brushless Fan(stirrer)(x2)	5V	80mA	0.40 W
Relay Module 1 (x2)	12V	40mA	0.48 W
Relay Module 2	5.2V	5mA	0.026 W
Temperature Sensor	5.2V	20mA	0.104 W
Total			~13.31 W

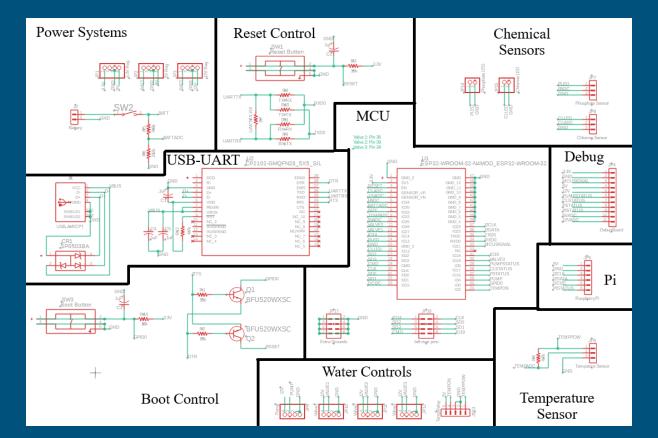
Battery Selection

1900	A STATE OF THE PARTY OF THE PAR
	(m) (m) 1
1	
-	

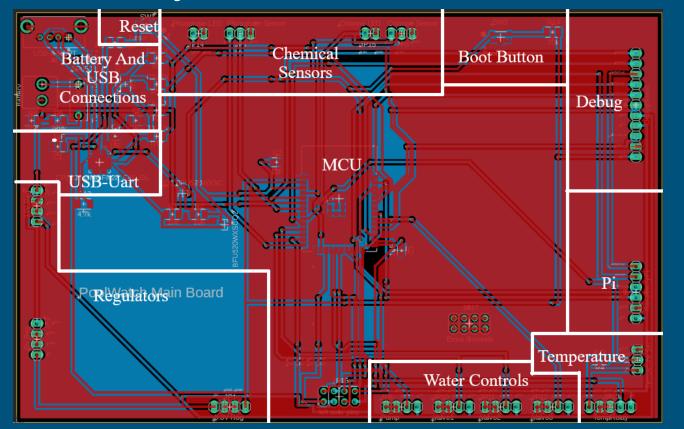
Features	<mark>Liion</mark> Wholesale	GlobTek	Sparkole
Capacity	3500 mAh	5000 mAh	2600 mAh
Watt-Hour Rating (Wh)	50.4 Wh	72 Wh	37.44 Wh
Max Continuous Discharge Current	10A	5A	N/A
Size	75 × 38 × 38 m m	90 × 75 × 31 mm	71 × 37.5 × 36.5 mm
Connector Type	Wire Leads	Wire Leads	JST-VH connector
Certification	IEC 62133, UL 1642	UL2054, IEC62133-2, UN38.3	CE RoHs UN38.3 MSDS
Cost	\$36.99	\$46	\$18.99

3.3V Buck Regulator	5.2V Buck Regulator	12V Buck Regulator
(LM2576S)	(LM2679)	(TPS621361)
-ESP32 -Phosphate Detection System -Chlorine Detection System -LEDs	-Raspberry Pi for Particulate Imager -Magnetic Stirrer	- Water Pump -Solenoid Valves -Relay Modules

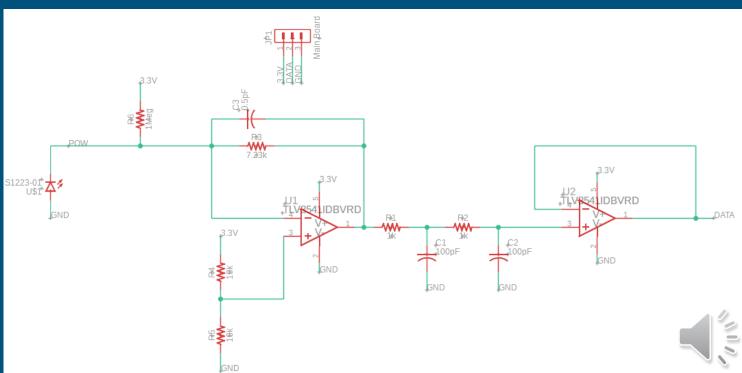
We needed three different buck regulators in order to buck down our Lithium-lon battery pack from 14.4V nominal voltage to the required rails needed for our system.

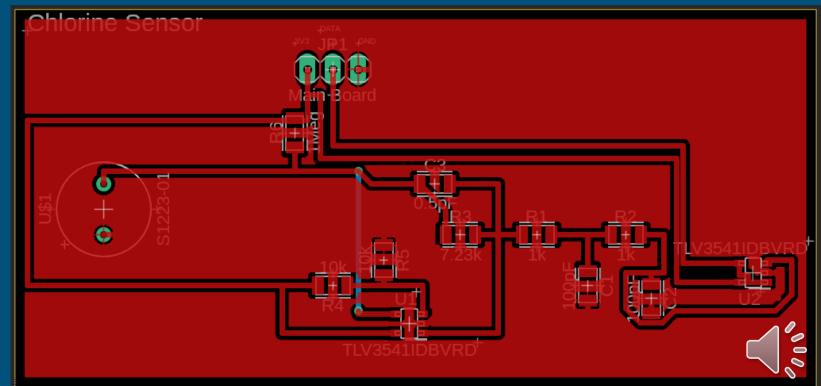


PCB Design

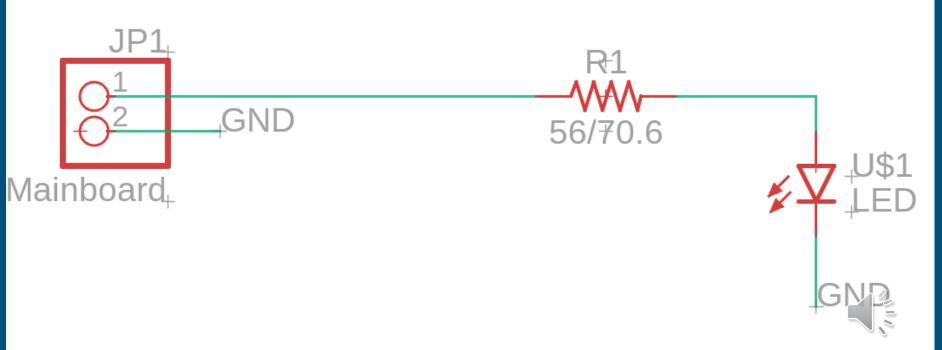


Mainboard Layout



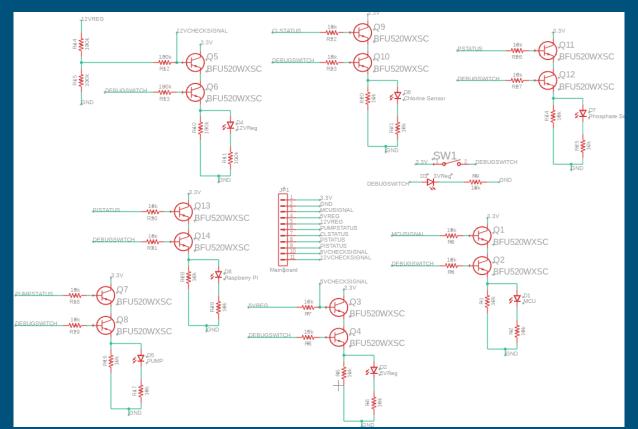


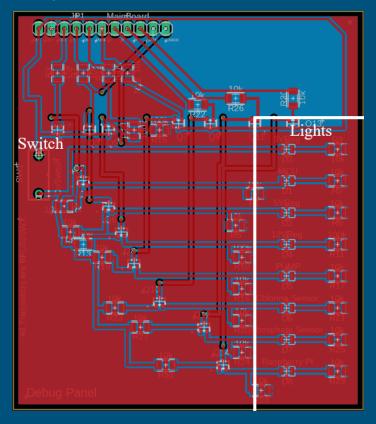
Chlorine and Phosphate Sensor Schematic



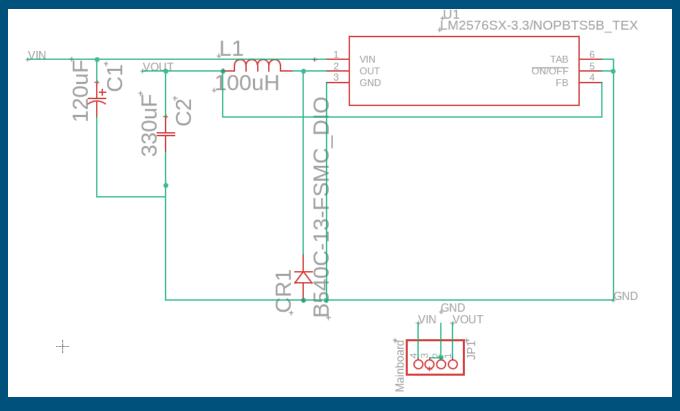
Chlorine and Phosphate Sensor Layout

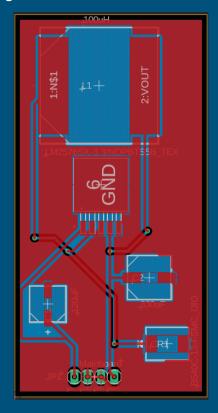

LED Schematic



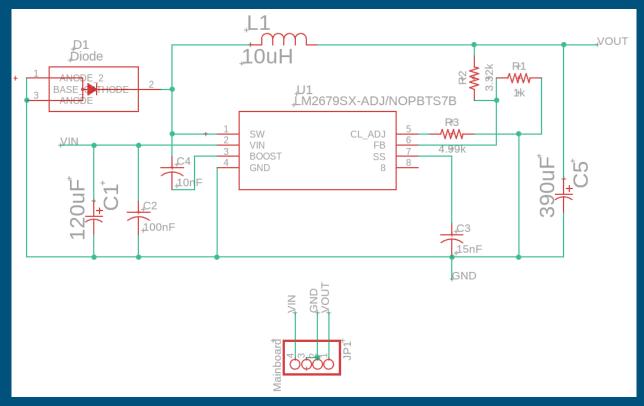

Debug Panel Schematic

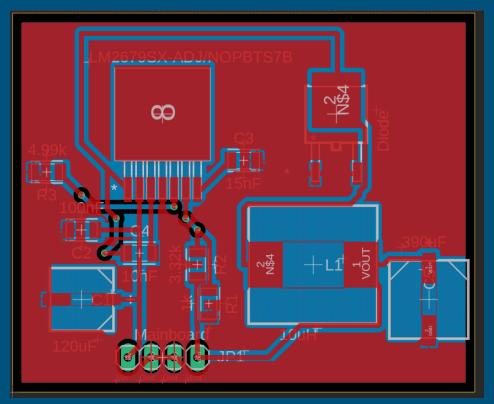
Debug Panel Layout

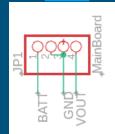


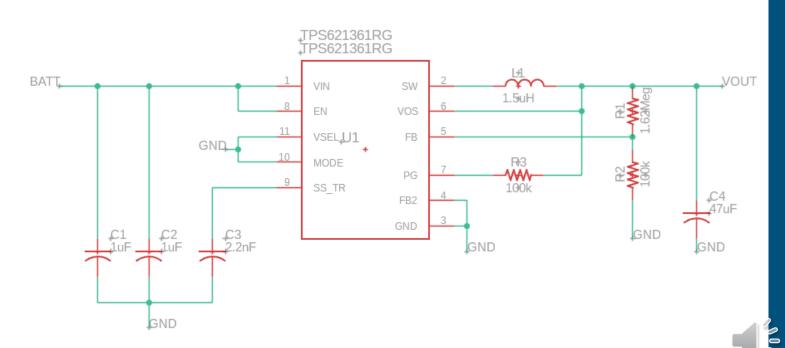


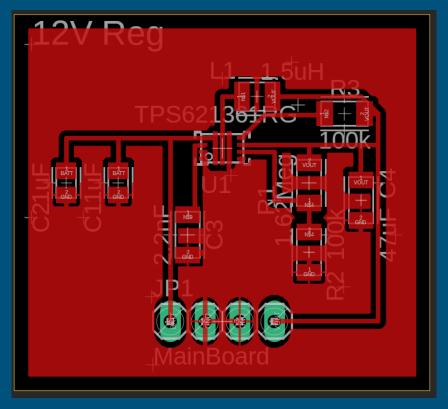
3V3 Regulator Layout



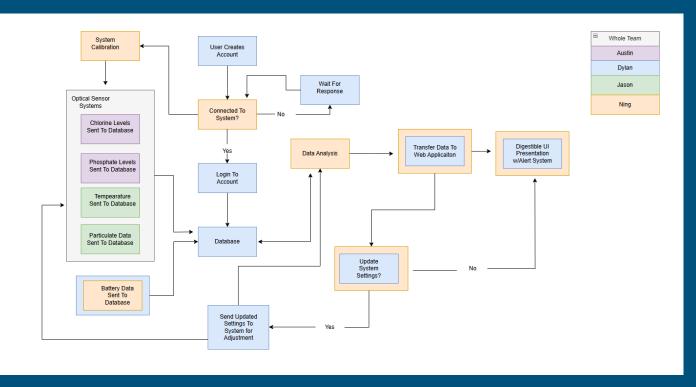








12V Regulator Layout



Software Selection

Software Block Diagram

802.11 b/g/n:

- Frequency Band: 2.4 GHz to 5 GHz
- Channel Width: 20 MHz to 40 MHz
- Data Rate: 11 Mbps to 600 Mbps

HTTP 1.1:

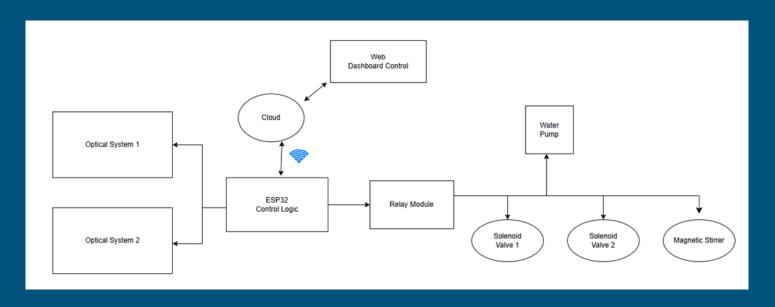
- One Message Connection
- Webserver Compatible
- Not Constantly Connected

Web Architecture	LAMP	MERN	MENN	
In date	Out of fashion	Deprecated tools	Yes	
Simple Routing	Yes	no	Yes	
Consistent Language	no	Yes	Yes	
Deployability	Only on Linux	Any computer	Any computer	
Server Side Rendering	no	no	yes	

Technology	Size	Speed	Different OS	Ease of use	Security	Kubernetes
Podman	smallest	fast	no	good	good	supported
Docker	small	fast	no	best	average	supported
Virtual Machine	largest	slow	yes	worst	good	Supported with addons

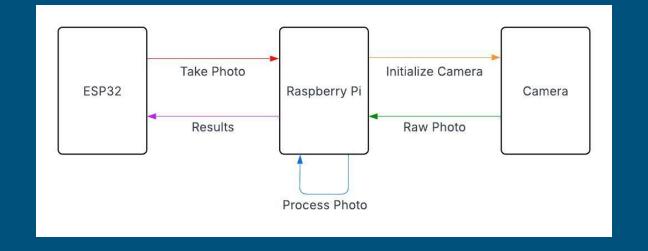
Manger	Docker Compose	Kubernetes
Scalable	no	yes
Network Tools	yes	yes
Persistence Tools	yes	yes
Security	present	better
Image Handling	Uses Docker Daemon	Requires a separate running registry

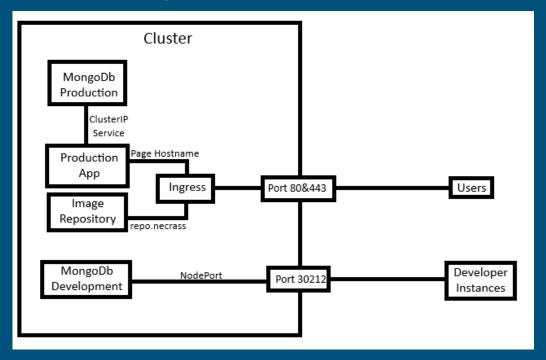
Web Host	Digital Ocean	Google Cloud	AWS	Azure
Cost	\$24	\$48.91	\$37.96	\$65.92
CPUs	2	2	2	2
Ram	4	8	8	4



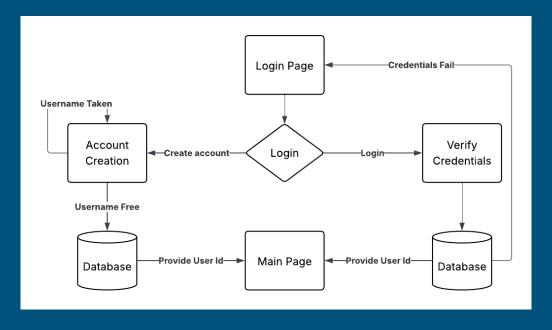
Software Design

ESP32 Control System

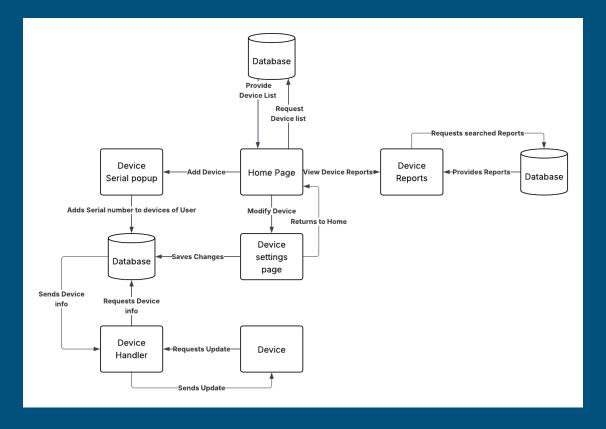



Particulate System

Web Traffic Design

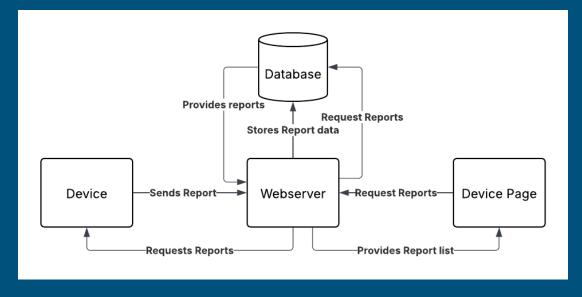

Web Server Backend - Account Data Structure

Variable	Description
Id	Unique Id associated with account.
Username	Username of account.
Password	Password of account.
Devices	A list of device serial numbers associated with the account


Web Server Backend Device Data Structure

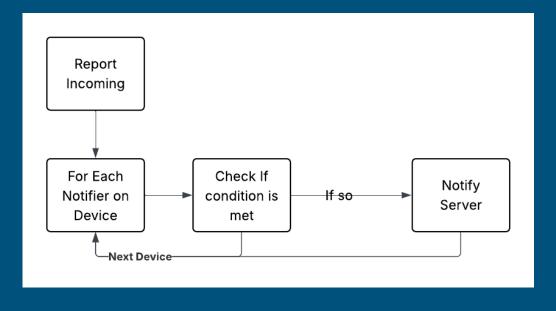
Variable	Description		
Serial Number	The serial number of the device		
Battery Charge	Percent of battery remaining		
Reports	A list of reports gathered by the device		
Connected	A boolean to show if the device is connected		
Pump Status	A boolean showing that the pump is functioning		
5V Regulator Status	A boolean showing that the 5V regulator is functioning.		
12V Regulator Status	A boolean showing that the 12V regulator is functioning.		
Sample Rate	How often the system samples the pool.		
Need Update	Boolean signifying an update is required of the device.		
Test Chlorine	Boolean requesting chlorine test		
Test Phosphate	Boolean requesting phosphate test		
Test Temperature	Boolean requesting temperature test		
Test Particulate	Boolean requesting particulate test		
Update Servers	Servers to notify about pool changes 68		

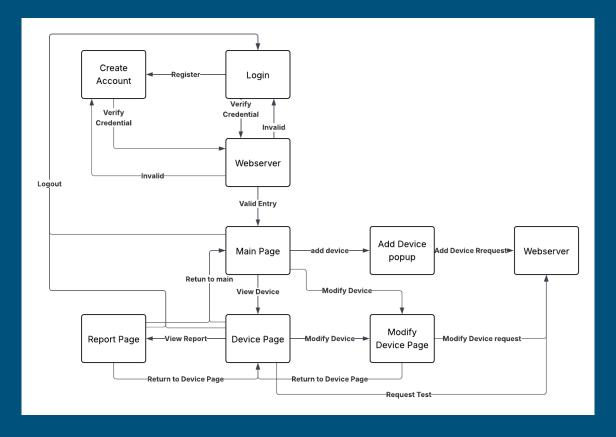
Web Server Backend - Device Flowchart



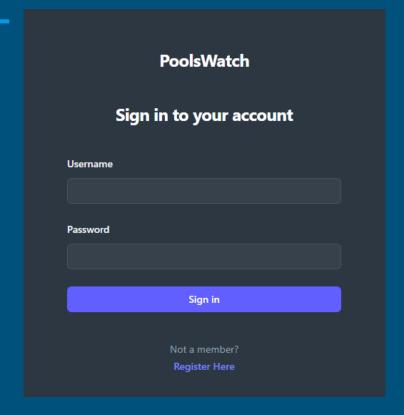
Variable	Description
Chlorine Concentration	Concentration of chlorine within the pool at time of the report.
Phosphoric Acid Concentration	Concentration of phosphoric acid within the pool at time of the report.
Temperature	Temperature of pool at time of report.
Particulates Amount	Amount of particulates in pool
Particulate Size	Size of particulates in pool

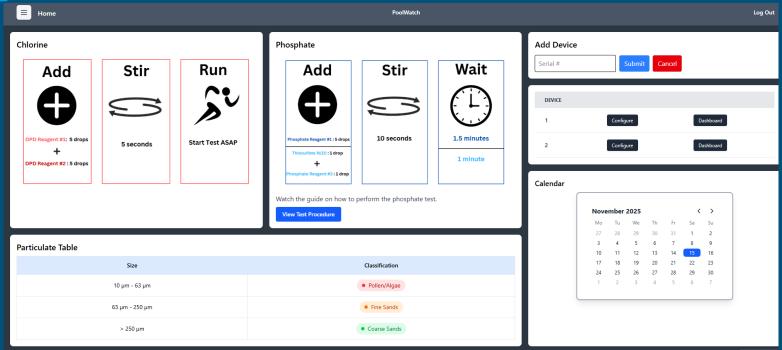
Web Server Backend - Report Flowchart





Web Server Frontend





PoolsWatch
Register an account
Username
Password
Reenter Password
Register
Already a member? Sign In Here

Web Server Frontend - Main Page

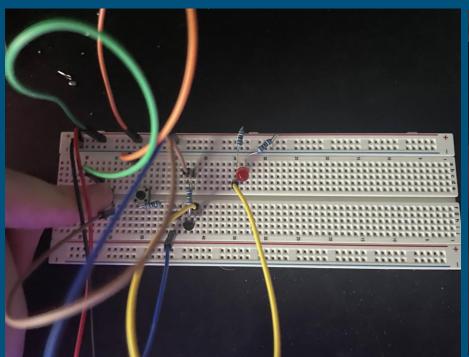
Web Server Frontend - Device Page

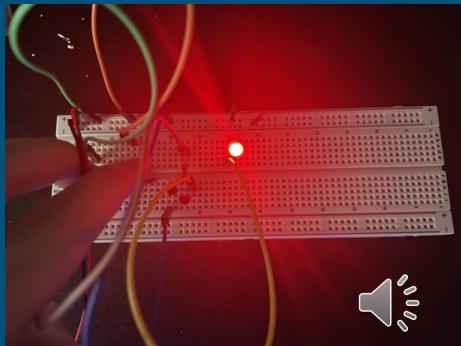
■ Home Device #2		O _c Search reports	Settings Log Out
Status Disconnected Battery: 0.85 pumpStatus: working fiveRegulator: failed twelveRegulator: working sampleRate: 24		Test Chlorine Test Phosphate Test Temperature Test Particulate	
	TEMPERATURE		
11/13/2025 - 21:16:8			
11/13/2025 - 21:15:32			

Web Server Frontend - Device Configuration

Home	Device #2	PoolWatch	Remove Device Log Out
<u>Settings</u>			
Sample Rate((hours)		
24			
Update			
<u>Notification</u>	<u>ons</u>		
Server	Server Type		
	Email		
Logic			
Add			
dhughes	1582@gmail.com		

Report: 11/13/2025 - 21:16:8	Delete	Log Out
6 (Likely Pollen or Algae), Percentage of Particles 63–125 microns: 42.86% (Likely Fine Sands), Percentage of Particles > 125 microns: 0.00% (Likely Q	Coarse Sands)	
,		Report: 11/13/2025 - 21:16:8 Delete (Likely Pollen or Algae), Percentage of Particles 63–125 microns: 42.86% (Likely Fine Sands), Percentage of Particles > 125 microns: 0.00% (Likely Coarse Sands)




Prototyping

Water Pump Test

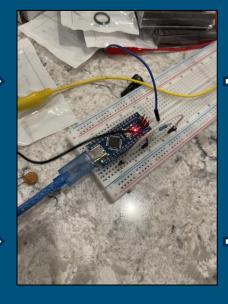
Water Pump Mode and Direction Selector

Water Pump Tubing into Cuvettes

Reagent Mixer Test

First Prototype of Magnetic Stirrer

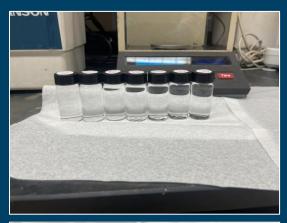
Final Design of Magnetic Stirrer

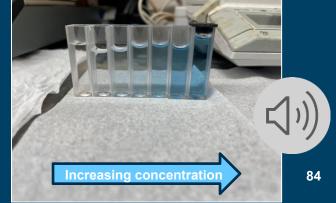


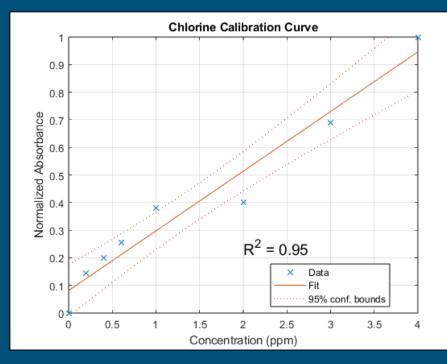
	Voltage (V)	Photocurrent (µ/
	-2.00		279.0
С	hlorine		

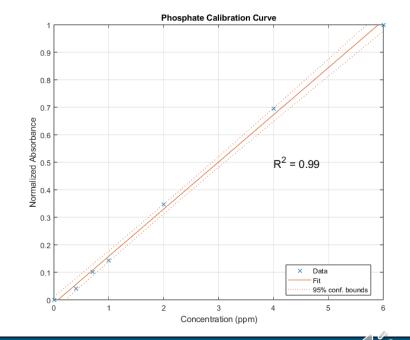
Phosphate

Voltage (V)	Photocurrent (μA)
-2.00	280.0


Calibration Curve I




Chlorine


Phosphate

Calibration Curve II

$$A = \log_{10} \frac{I_0}{I} = \epsilon bc \tag{1}$$

POST /device/exists HTTP/1.1 Host: device.skadi:8080

Content-Type: application/json

Content-Length: 19

Connection: close Serial Number

{"serialNumber": 1}

HTTP/1.1 200 OK

X-Powered-By: Express

Access-Control-Allow-Origin: *

Content-Type: application/json; charset=utf-8

Content-Length: 16

ETag: W/"10-/Xn4Kh95AH5gGc00qqetzl0j8pQ"

Date: Sat, 15 Nov 2025 15:52:56 GMT

Connection: close Response

{"answer":false}

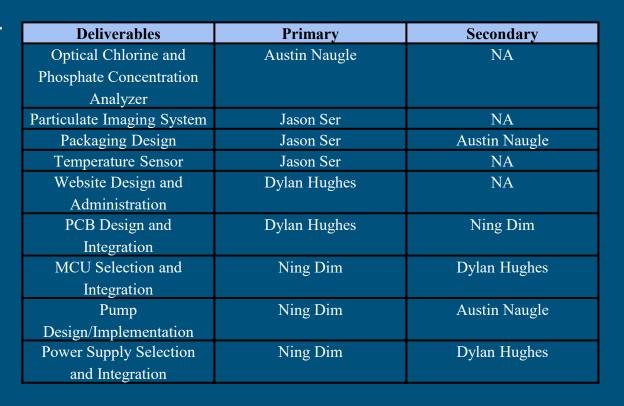
POST /device/create HTTP/1.1 Host: device.skadi:8080 Content-Type: application/json Registration Content-Lenath: 121 Connection: close "serialNumber": 1, "battery": 0.5, "pumpStatus": true, "fiveRegulator": true, "twelveRegulator": true, "sampleRate": 10} X-Powered-By: Express Access-Control-Allow-Origin: * Content-Type: application/json; charset=utf-8 Content-Length: 16 ETag: W/"10-do6uB5t9n+N7lyRaEx6jXcf7Kd4" Response Date: Sat, 15 Nov 2025 15:52:56 GMT Connection: close "update":false}

Website Testing - Report Sending

Website Testing - Device to Server Test

```
HTTP/1.1 200 OK
Date: Tue, 22 Jul 2025 16:39:00 GMT
                                                                 Received Message
Content-Type: application/json; charset=utf-8
Content-Length: 120
Connection: close
X-Powered-Bv: Express
Access-Control-Allow-Origin: *
ETag: W/"78-/G0dYwyuXgnow4dZ1EaD6rjNSkI"
{"needUpdate":true,"sampleRate":24,"testChlorine":true,"testPhosphate":true,"testTempature":true,"testParticulate":true}
true
true
true
true
Update Sample Rate
24.00
Run Chlorine Test
                       Tests Ran From
Run Phosphate Test
Run Tempature Test
                       Message
Run Particulate Test
```


Administrative Content


Budget

Work Distribution

