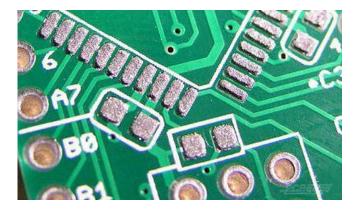
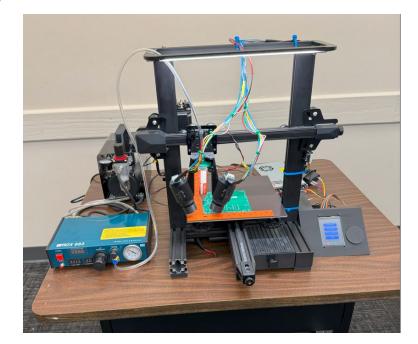
Automatic Solder Paste Dispenser for Prototype Printed Circuit Boards

Group 4 CDR Presentation 2025

Mikell Alfonso B.S.E.E Minor - Business Administration

Nathan Boucher B.S.E.E. Minor - C.S.


Elizar Tsymlyakov B.S.P.S.E.


Edward Weir B.S.C.E.

Motivation and Background

- Help automate the PCB fabrication process
- Alternative to hand solder/laying out paste
- Saves time for students
- Uses the shell of an old Ender 3
- Stereolithography for quality control
- Sponsored by Dr. Weeks

Goals and Objectives

Basic Goals:

- Create a solder paste dispenser utilizing the Creality Ender 3
- Implement a schematic/Gerber file upload system
- Determine user's PCB placement
- Dispense proper amount of solder based on required SMD size
- Achieve SMD package size of 0603(imperial)/1608(metric)
- Design optical inspection system for stereo vision and magnification
- Program Touchscreen display

Advanced Goals:

- Achieve SMD package sizes 0402(imperial)/1005(metric)
- Optimize dispensing time on the max supported PCB size
- Develop image processing software that exports a metric 3D reconstruction of PCB to measure heights.

Stretch Goals:

- Achieve SMD package sizes 0201(imperial)/0603(metric) or less
- Implement a pick-and-place system
- Determine origin point of more uniquely shaped PCBs
- Establish Wi-Fi/Bluetooth modules for schematic upload option and 3D model exports

Goals and Objectives

Objectives to achieve Basic Goals:

- Design custom main PCB, stepper motor driver PCB, power regulator PCB
- Implement schematic file upload system using external USB port and/or SD card reader
- Locate user's PCB placement using L-bracket and stereoscopy system
- Dispense solder paste at SMD package size 0603(imperial) / 1608(metric) (test)
- Display all information on touchscreen display

Objectives to achieve Advanced Goals:

- Dispense solder paste at SMD package size 0402(imperial) / 1005(metric) (test)
- Test/optimize dispensing time for prototype PCBs within our maximum supported size
- Generate/export 3D reconstruction of dispensed solder dots using OpenCV

Objectives to achieve Stretch Goals:

- Dispense solder paste at SMD package size 0201(imperial) / 0603(metric) or less
- Implement pick and place system utilizing pneumatic pump
- Expand stereoscopy system to determine origin points of differently shaped PCBs
- Implement Wi-Fi module/Bluetooth support for schematic upload

Board Handling						
<u>* àüêi úî ñàcã 0@å</u> Ńijü ŷő	8" x 8" / (203.2mm x 203.2mm)					
<u>* êi êi úî ñà ôã 0 ê° å</u> Ńư jũ ŷ ő	1" x 1" / (25.4mm x 25.4mm)					
Board Securing Method	Rubber mat					
Touchscreen	Touchscreen					
Touchscreen Reactiveness	Registers 95% of light touches					
Facilities						
Power Requirements	120VAC					
<u>* à ä è đi ả ! đi ả i ö đĩ ö</u> Ńư jũ ŷ ü źő	45 cm x 45 cm x 50 cm					

Table of Engineering Specifications

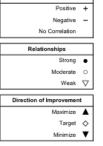
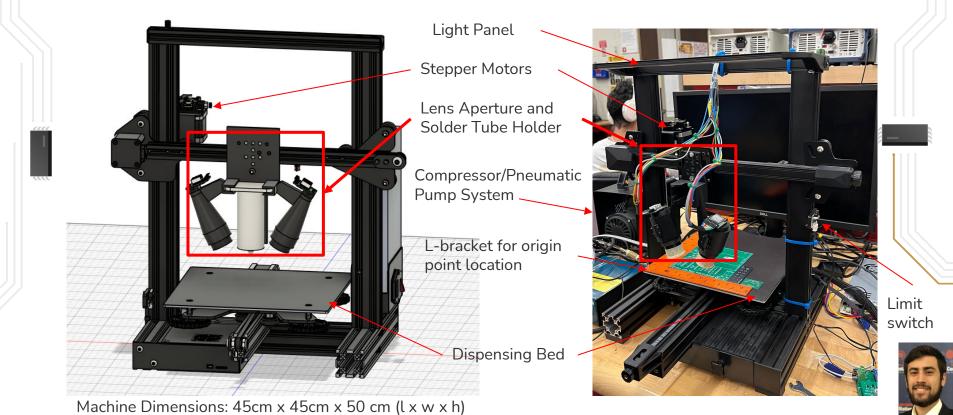

Print Parameters						
<u>* à ü đi ú î - ô đi õi ô å à</u> Ńưjü ŷő	200 mm x 200 mm					
Solder Dispensing Resolution	0.2 mm					
<u>Minimum Surface Mount Size Supported</u>	0603 (imperial) 1608 (metric)					
<u>! côó ảĩ öả ô % ả à ã * ñ ù ả ĩ õ / ả ö ñ ì ú cên ĩ</u> Ńư, ü ŷ ü 2°ő	0.1 mm					
Motor Precision (Percent Error)	5% Margin of Error					

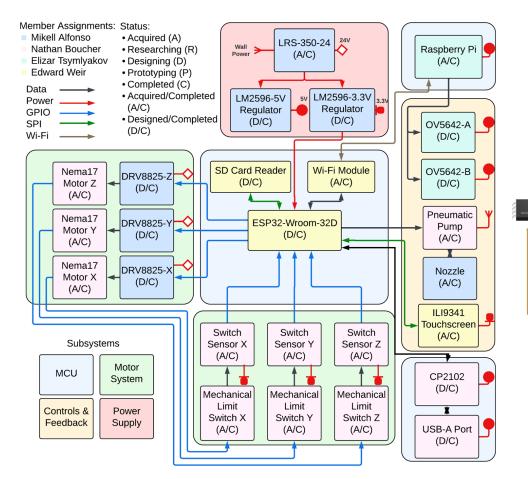
Table of Engineering Specifications

Optical System						
Image Area	5 mm x 5 mm (7.07 mm diagonal length)					
Effective Magnification (Optical x Digital)	>18x					
Minimum Surface Mount Size for Imaging	0603 (imperial) 1608 (metric)					
Stereoscopic Height Resolution	10 µm					
Minimum Depth of Field	1 mm					
Minimum Resolution	25 µm					
Length	<300 mm					


Correlations

- ○ ▽ # ▲		~	<		\otimes		8		$\left\langle \right\rangle$	+	\mathbf{X}
	Column #	1	2	3	4	5	6	7	8	9	10
	Direction of Improvement		▼			V	▼	▼		▼	▼
Direction	Customer Requirements (Expicit and Implicit)	Pawer Consumption	Matar Precision	Mator Power Efficiency	Optical Target Magnification	Stereoscopic Height Resolution	Solder Paste Ball Size	SMD Package Size	Touch Screen Reactiveness	Cost	Minimimum kile Time
۸	Affordability	0	٠		•	•	0	•	•	٠	0
۸	Reliability	0	0	•			0	0	0		•
•	Ease of Use	0		0				0	0		•
•	Time Efficient		٠		0	0	0	•	•	٠	0
•	Safe	•		•						٠	
•	Easy Verification				•	•			•	٠	
۸	Low Noise	0	0	•						٠	0
	Target	120V @60Hz	0.1mm Precision	80% Power Effectency	10x Magnification	0.1mmHeight Resolution	0.2mm Ball Size	0603 (Imperial) / 1608 (metric)	Register 95% of light touches	\$1,000 for Praduction Unit	24 Hours

House of Quality



System Overview

Hardware Block Diagram

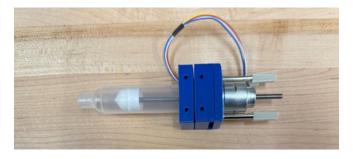
- 24V Source = LRS-350-24
- 5V Regulator = LM2596-5V
- 3.3V Regulator = LM2596-3.3V
- Microcontroller = ESP32-Wroom-32D
- Wi-Fi Module = Built-in Wi-Fi antenna to ESP32
- SD Card Reader = TF-01A microSD Card Reader
- Motor Driver = DRV8825
- Stepper Motor = NEMA17
- Mechanical Limit Switch/Switch Sensor = Creality Endstop Limit Switch
- Website Host Microcontroller = Raspberry Pi
- Camera = OV5642
- Pneumatic Pump = Feita 983
- Nozzle = >Metal Needle Nozzle
- Touchscreen Display = ILI9341
- USB-UART Bridge = CP2102
- USB Port = 1932258-1 USB-A Port

Hardware Selection: MicroController Selection

	ESP32-WROOM-MD	MSP430F6459	RP2530B
Cores	2	1	2
CPU Frequency	80MHz-240MHz	20MHz	150MHz
Wi-Fi Support (Natively)	Yes	No	No
Bluetooth Support (Natively)	Yes	No	No
RAM	448kb ROM, 520 kb of SRAM	512kb non-Volatile, 66kb RAM	520kb of SRAM
Supports External Memory	Yes	No	Yes
GPIO Pins	38	74	48

ESP32 was selected because...

Hardware Selection: Touch Screen


	ST7789	ST7735R	HX8357	ILI9488	ILI9341
Interface	SPI	SPI	SPI	SPI	SPI
Pixel Resolution (pixels x pixels)	240 x 320	128 x 160	320 x 480	320 x 480	240 x 320
Color Depth (bits)	18	18	18	16	16
Screen Size (inches)	2	1.8	3.5	3.5	3.2
microSD Card Reader	Yes	Yes	Yes	No	No
SD Card Reader	No	No	No	Yes	Yes

• ILI9341 chosen for mainly for comm protocol of SPI, decent color depth, and just right size of 3.2 inches

Hardware Selection: Dispensing Methods

	Pneumatic Dispenser:	Stepper Motor Driven Screw Dispenser:
Precision	High	High
Speed	Fast	Moderate
Calibration needed	Minimal	Maximul
Cost	Moderate	Moderate

Hardware Selection: Stepper Motor Drivers

	A4988	DRV8825	TMC2225	
MicroStepping Resolution	1/16	1/32	1/256	
GPIO Pins Required (Minimum Configuration)	2 (Step +Dir)	2 (Step +Dir)	2 (Step +Dir)	
Voltage Input (VMOT)	8V-35V	8.2V-45V	4.75V-36V	
Logic Voltage Level (High)	3V-5.5V	2.2V-5.25V	3.3V-5V	
Max Current (Per Coil)	2A	2.2A	2A	
Price Per Unit (Per IC not the board itself)	\$4.25	\$5.73	\$5.61	

Hardware Selection: CMOS Sensor

	Arducam OV2640	Arducam IMX 230	Arducam OV5642	
Price	\$10-\$15	\$80-\$90	\$40	
Sensor size (pixels)	1600 x 1200 (2 MP)	5472 x 3648 (21 MP)	2592x1944 (5 MP)	
Pixel Size	1.75 μm x 1.75 μm	1.12 μm (w) x 1.12 μm (h)	1.4 μm x 1.4 μm	
<u>Sensor size (mm)</u>	4.6 mm x 3.4 mm	7.216 mm x 5.497 mm	3.67 mm x 2.73 mm	
Diagonal Length	4.5 mm	7.487 mm	4.57 mm	
Dynamic Range	50 dB	"High"	68 dB	
SNR	40 dB	"High"	36 dB	
Power Supply	2.5~3.0V	3.3V DC	5V/390mA	
Interface	CSI2	CSI2	SPI	

Hardware Selection: Lens

	Thorlabs LB1378-ML	Thorlabs TRH-040-A-ML	Thorlabs TRS- 040-A-ML
Price	\$52.28	\$111.38	\$117.31
Working Distance	40 mm	68.2 mm	68.2 mm
Focal Length	40 mm	40 mm	40 mm
<u>Diameter</u>	12.7 mm	25.4 mm	25.4 mm
<u>Type</u>	Singlet	Hastings Triplet	Steinheil Triplet

Hardware SubSystem: Raspberry Pi(4)

- Hosts the Web Server (including local MongoDB)
- Utilizes the two cameras to take pictures
- Runs the python Code for the stereoscopy system
- UI for users to upload Gerber Files, as well as download their images
- Communicates with the ESP-32 in order to POST Gerber-Files, as well as receive a request to take a picture

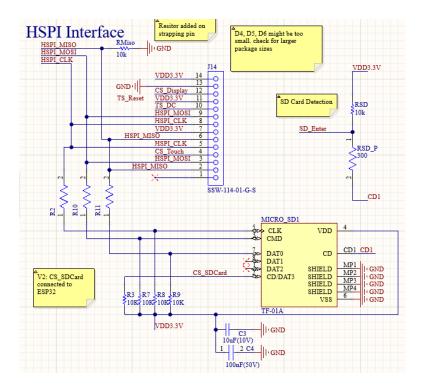
Power Distribution Table

	ESP32	ILI934 1	CP2102	OV5642 A	OV5642 B	DRV882 5 X	DRV882 5 Y	DRV882 5 Z	Total
Expected Supply Voltage	3.3V	3.3V	3.3V	5V	5V	24V	24V	24V	24V
Expected Supply Current	<300mA	<50mA	26mA	390mA	390mA	2.5A	2.5A	2.5A	8.656A
Expected Power Consumptio n	0.99W	0.165 W	0.0858 W	1.95W	1.95W	60W	60W	60W	185.14W

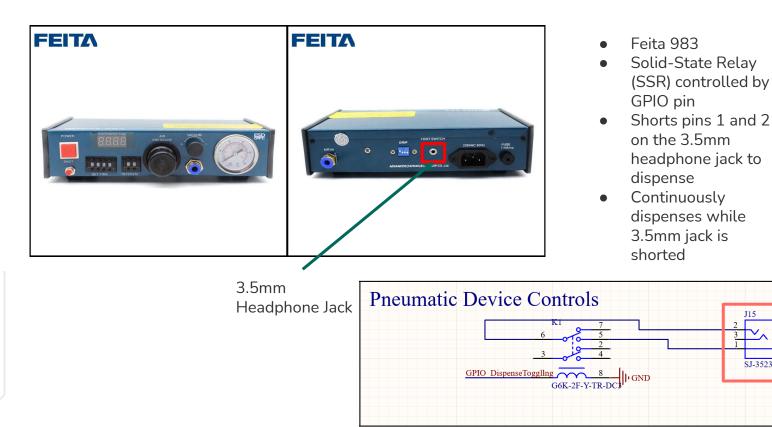
Hardware Selection: Power Supply Unit

	CMS350-24	LRS-350-24	S35024	UHP-350-24	PMT-24V350W1AK	WMA350H-24	233-6892
Manufacturer	Creality	Mean Well	Mean Well	Mean Well	Delta	Cosel	RSPRO
Output	24V, 14.6A	24V, 14.6A	24V, 14.6A	24V, 14.6A	24V, 14.6A	24V, 14.6A	24V, 14.6A
Efficiency	NA	88%	81%	94%	87%	87%	93%
MTBF	NA	328.6K hrs (25°C)	234.3Khrs (25°C)	285Khrs (25°C)	700Khrs (35°C)	NA	>300Khrs (25°C)
Protections	SC, OV, OL, OT	OL, OV, OT	OL, OV	OL, OV, OT	OV, OL, OT, SC	OC, OV	OV, OC, SC
Dimensions (mm)	215x115x30	215x115x30	215x115x50	220x62x31	215x115x50	115x30x215	130x86x35
Cost	\$31.67 (Creality)	\$38.11 (DigiKey)	Obsolete	\$69.31 (MeanWell)	\$74.98 (DigiKey)	\$75.88 (DigiKey)	\$133.84 (eezee)

Hardware Design: ESP32-WROOM-32D


ESP32-Wi	oom-				IS_Reset needs low to reset, keep high?	
* = Input Only M2 = VDD3.3V M0 & M1 tied together	VDD3.3V	2	MD1 3V3 * SENSOR VN* * SENSOR VP*	IO0 IO2 IO4 IO5 IO12 IO13 IO14 IO15	25 IO0 4 M2 6 CS SDCard 9 CS Touch 4 HSP1 MISO 6 HSP1 MOSI 13 HSP1 CLK 3 CS Display 27 M0 M1	TS_Res Micr ostep ping Res M0,
	EN	3	EN	IO16 IO17 IO18 IO19 IO21 IO22	28 Dir X 30 TS DC 1 Step X 3 GPIO Dispen 36 Switch Z 37 Switch Y	M1, M2 seTogglin
The Node TXD and RXD are labled relative to the USB->UART IC	TXD RXD	34 35	RXD0 TXD0	IO23 IO25 IO26 IO27 IO32 IO33	1 Dir Z 1 Dir Z 2 Step Z 8 Dir Y 9 Step Y	
GPIO pins for SD card Insertion and Stepper X	;		> CLK SD1 SD2 SD3 CMD	IO34* IO35* GND GND GND GND	6 SD_Enter 1 GND 15 GND 38 GND 99 GND	
GPI036 (SENSOR VP) = GPI039 (SENSOR VN) = GPI034 = Input Only GPI035 = Input Only			ESP32-WROOM-32D			

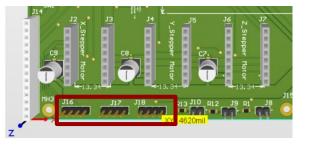
- Flashing VIA a CP2102 USB -> UART Circuit
- Main Driver of the SPD
- Built in PCB Antenna for 2.4GHz
- Powered by 3.3V from the Regulator Circuit
- Responsible for Controlling:
 - Stepper Motor Drivers
 - Step + Dir
 - Microstepping Resolution
 - Mechanical Switches
 - TouchScreen
 - MicroSD Card
 - SSR hooked up to the Pneumatic Device
- Interfaces VIA Wi-Fi to the Web Server



Hardware Design: SPI Interface

- Three Slaves:
 - MicroSD Card
 - TouchScreen Display
 - TouchScreen Touch
- Header pins to connect to the touch screen
- Pull-up resistors and bypass capacitors for the MicroSD Card
- Utilizing Chip Detect on the SD Card to determine when it is removed, re-initializes the SD card every time it is plugged back in
- 0 Ohm resistors for potential impedance matching

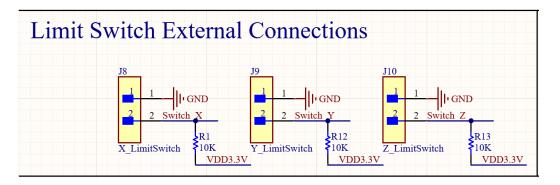
Hardware Design: Dispensing System

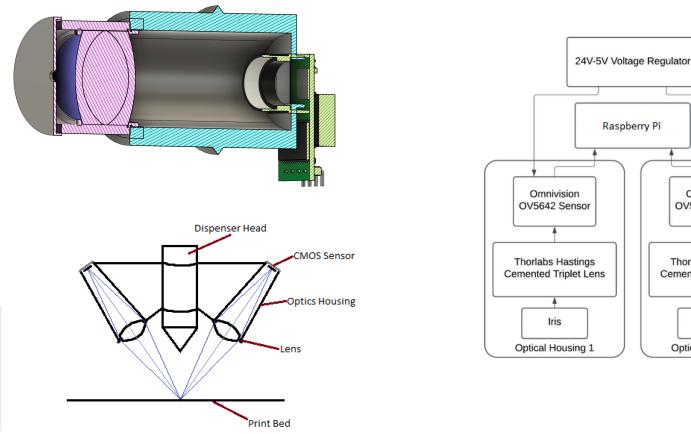

J15

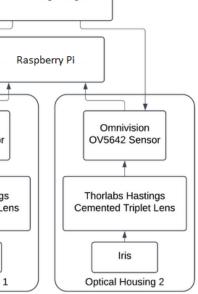
SJ-3523-SN

Hardware Design: Stepper Motors

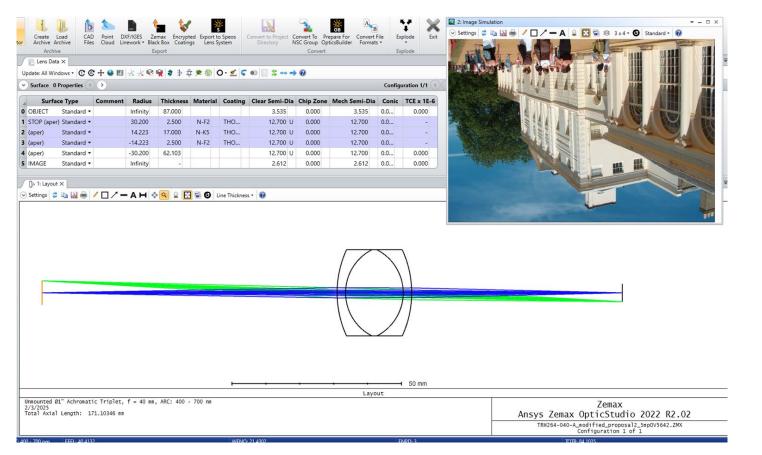
- Three NEMA 17 Motors
 - o X-Axis
 - Y-Axis
 - o Z-Axis
- Creality 42-34s
- Powered and controlled by the custom DRV8825
- 1.5Amps Per Phase
- 1.8* step resolution
- 2 GPIO pins required per AXIS
- External header-pins to wire the motors.
- Utilizing 1/32nd Microstepping




Hardware Design: Mechanical Switches



- Creality Mechanical Switches
- Three Axis:
 - X-Axis
 - Y-Axis
 - o Z-Axis
- Initial Calibration Required
- Pull-up Resistors
- Logic-Low
- Connected with a set of Header Pins
- 3D printed holder for Z-limit Switch



Optical Magnification

$$M_{optical} = \frac{sensor\ diameter}{image\ diameter} = \frac{4.57\ mm}{7.07\ mm} = 0.646 \qquad \qquad M_{optical} = \frac{z'}{z} = \frac{62.1\ mm}{87\ mm} = 0.646$$

Total Magnification

$$M_{Total} = \frac{feature \ length \ in \ image}{feature \ length \ in \ object} = \frac{125 \ mm}{5 \ mm} = 25$$

System Length

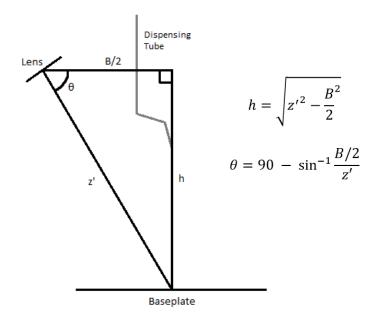
62.1 mm + 87 mm + 22 mm = 171.1 mm

Numerical Aperture

$$NA = \frac{D}{2 \times f} = \frac{3 mm}{2 \times 40 mm} = 0.0375$$

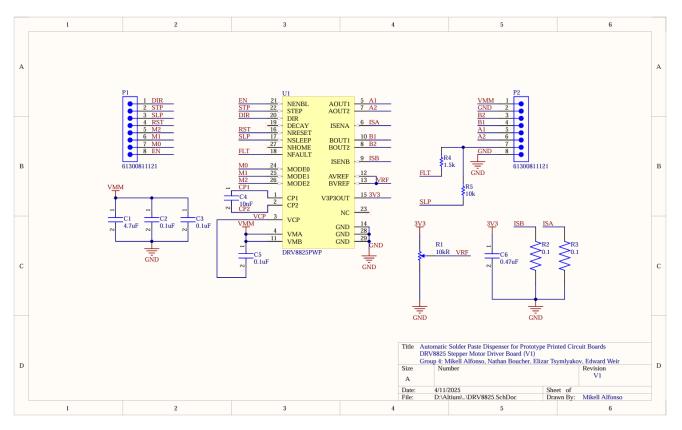
Minimum Achievable Resolution

Resolution =
$$\frac{0.61 \times \lambda}{NA} = \frac{0.61 \times 750 \times 10^{-9} m}{0.0375} = 12.2 \ \mu m$$

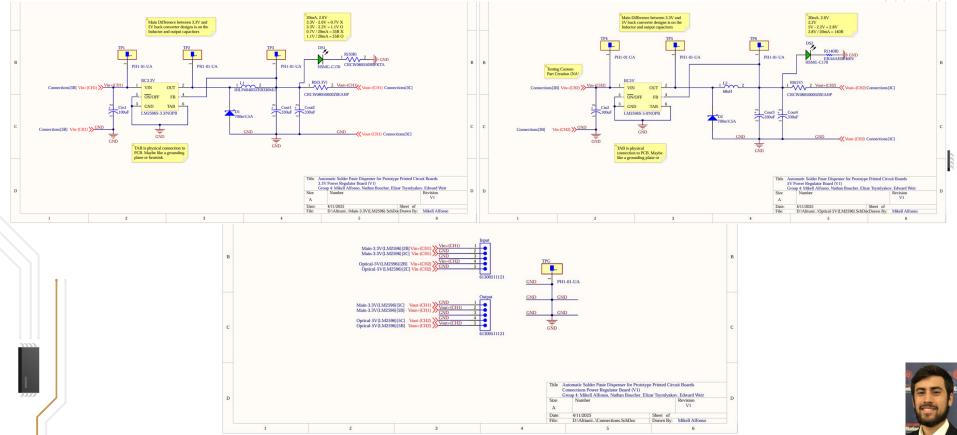

Depth of Field

$$DoF = \frac{2 \times z'^2 \times \frac{f}{D} \times c}{f^2} = \frac{2 \times 87^2 \times \frac{40}{3} \times 0.01}{40^2} = 1.262 \text{ mm}$$

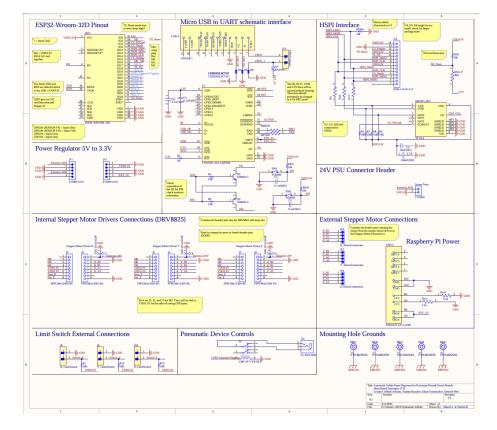
Engineering Requirement	Chosen Specification	Calculated Specification	Comparison	
Optical Configuration Length	<300 mm	171.1 mm	Achieved	
Numerical Aperture	>0.0183	0.0375	Achieved	
Minimum Feature Size	25 µm	12.2 µm	Achieved	
Total Magnification	>18x	25x	Achieved	
Dynamic Range	>40 dB	63.3 dB	Achieved	
Depth of Field	Depth of Field >1.0 mm		Achieved	



- Increasing baseline (B), increases camera angle. This increases the difficulty of matching pixels for stereo.
- Optimal camera angle (θ) 60°-80° (1)
- Minimum baseline possible depends on the width of the dispensing tube.
- If z' = 87 mm and we want the optimal camera angle, the baseline length must be be 30 87 mm.

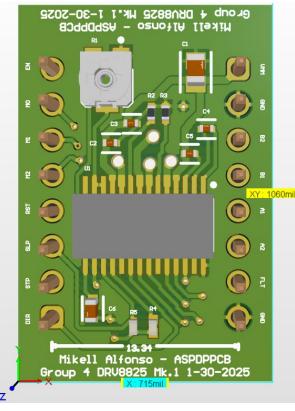


 X. Liu, W. Chen, H. Madhusudanan, L. Du and Y. Sun, "Camera Orientation Optimization in Stereo Vision Systems for Low Measurement Error," in IEEE/ASME Transactions on Mechatronics, vol. 26, no. 2, pp. 1178-1182, April 2021, doi: 10.1109/TMECH.2020.3019305.

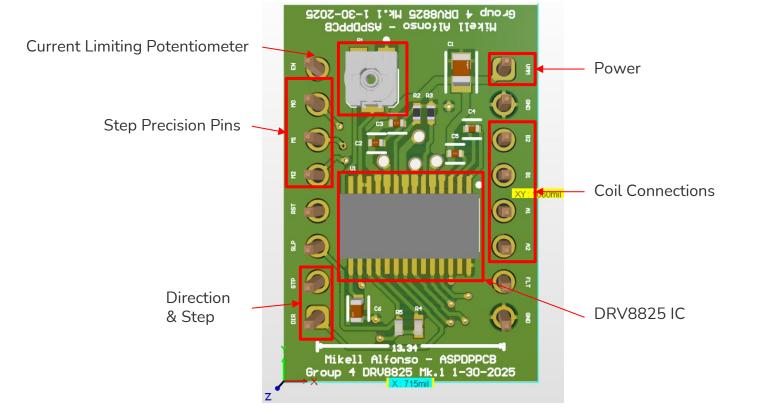

Hardware Design: Motor Driver Schematic

Hardware Design: Power Regulator Schematic

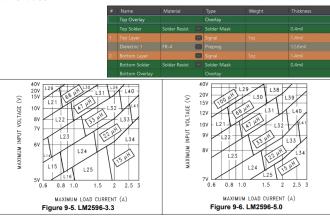
Hardware Design: Main Board Schematic V2

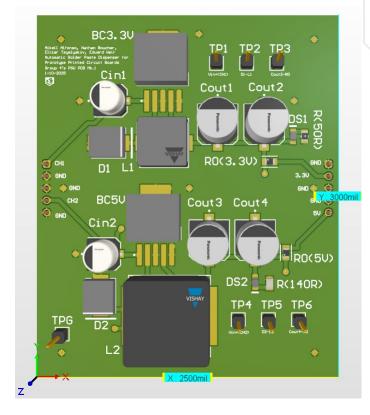


Hardware Design: Motor Driver PCB

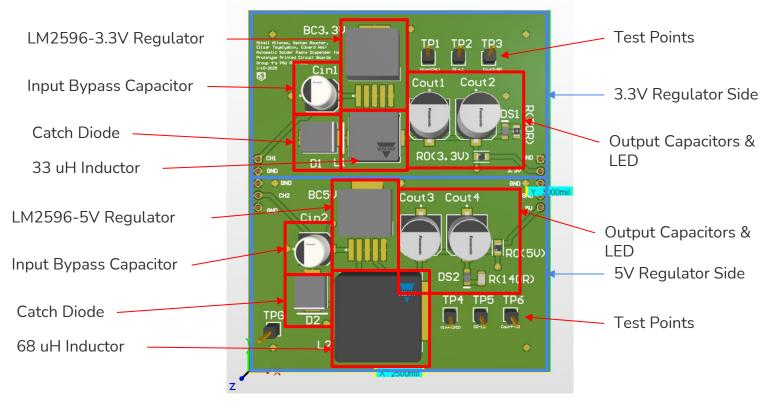

- Two Layers (Signals)
- GND Copper Pour (0.468 in² Top Layer and 0.546 in² Bottom Layer)
- Matched pin layout and distance between header pins of DRV8825 modules purchasable online
- Three duplicates of these will be used

#	Name	Material		Туре	Weight	Thickness
	Top Overlay			Overlay		
	Top Solder	Solder Resist		Solder Mask		0.4mil
1	Top Layer			Signal	1oz	1.4mil
	Dielectric 1	FR-4		Dielectric		12.6mil
2	Bottom Layer				1oz	1.4mil
	Bottom Solder	Solder Resist		Solder Mask		0.4mil
	Bottom Overlay			Overlay		

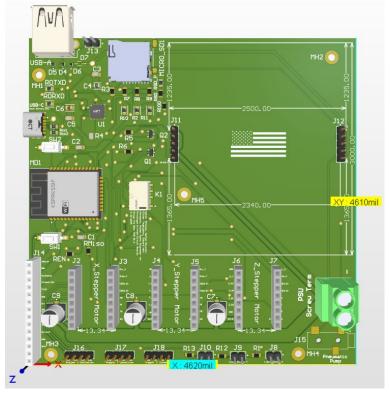

Hardware Design: Motor Driver PCB

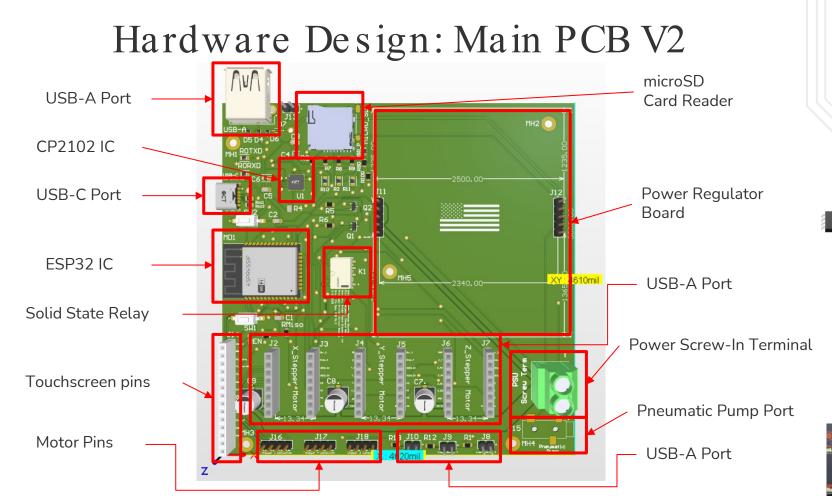


Hardware Design: Power Regulator PCB


- Two Layers (Signals)
- GND Copper Pour (6.296 in² Top Layer and 7.046 in² Bottom Layer)
- LM2596-3.3V and LM2596-5V Fixed Output Versions
- Inductor values from datasheet
- DS1 and DS2 are LEDs
- R0 are zero ohm resistors
- Test Points

Hardware Design: Power Regulator PCB




Hardware Design: Main PCB V2

- Two Layers (Signals)
- GND Copper Pour (16.34 in² Top Layer and 18.652 in² Bottom Layer)
- USB-A Port
- microSD Card Reader
- CP2102 USB-to-UART Bridge
- ESP32-Wroom-32D
- Solid State Relay (K1 Pneumatic Pump)
- ILI9341 Display Female Header Pins (J14)
- DRV8825 Motor Driver Header Pins (J2-J7)
- Stepper Motor Connections (J16-J18)
- Limit Switches (J8-J10)
- Auxiliary Port (J15 Pneumatic Pump)
- Screw Terminal for power from PSU
- Male Header Pins for Regulator PCB

	Name	Material		Туре	Weight	Thickness
	Top Overlay			Overlay		
	Top Solder	Solder Resist		Solder Mask		0.4mil
1	Top Layer		-	Signal	1oz	1.4mil
	Dielectric 1	FR-4				12.6mil
	Bottom Layer				1oz	1.4mil
	Bottom Solder	Solder Resist		Solder Mask		0.4mil
	Bottom Overlay			Overlay		

Hardware Testing: Regulator PCB

	Input	Input	Input	Output	Output	Output	ΔPower	Operating	Efficiency
	Voltage	Current	Power	Voltage	Current	Power		Temp	
3.3V	24V	0.1984A	4.7612W	3.2540V	0.9960A	3.2410W	1.5202W	~45.61° ℃	68.07%
Regulator									
5V	24V	0.2807A	6.7366W	4.9950V	0.9960A	4.9750W	1.7616W	~52.85° ℃	73.85%
Regulator									

7.4 Thermal Information

			LM	2596	
	THERMAL METRIC ⁽¹⁾	KTW (TO-263)	NDZ (TO-220)	UNIT	
			5 PINS	5 PINS	
		See ⁽⁴⁾	-	50	
P	Junction-to-ambient thermal resistance ^{(2) (3)}	See ⁽⁵⁾	50	—	°C/W
R _{θJA}		See ⁽⁶⁾	30	—	
		See ⁽⁷⁾	20	—	

- (6) Junction to ambient thermal resistance with the TO-263 package tab soldered to a single sided printed circuit board with 2.5 in² of 1-oz copper area.
- (7) Junction to ambient thermal resistance with the TO-263 package tab soldered to a double sided printed circuit board with 3 in² of 1-oz copper area on the LM2596S side of the board, and approximately 16 in² of copper on the other side of the PCB.

Hardware Testing: Regulator PCB

3.3V Regulator

5VRegulator

Electronic Load: CC 2.5A

Electronic Load: CC 2.5A

3.3V Regulator @ 69.8°C. To: -40°C ≤ Tj ≤ 150°C. 3.3V Diode @ 83.0°C. To: -55°C ≤ Tj ≤ 150°C 5V Regulator @ 71.0°C. To: -40°C \leq Tj \leq 150°C.

5V Diode @ 84.9°C. To: -55°C ≤ Tj ≤ 150°C

PCB Problems with Solutions

Motor PCB

Problems:

- High Frequency Noise
- Jittery movement
- IC Frying

Solutions:

- Impedance matching & trace lengths for V2
- Calibration
- Replace IC

Regulator PCB

Problems:

- LED Burning (shorted with DMM)
- Hot temperatures past 2.5A

Solutions:

- Replace LED
- 2.5A surpasses power consumption

Main PCB V1

Problems:

- Driver pins connected to input only pins on ESP32 (blue wire)
- Impedance matching resistors missing (blue wire)

Solutions:

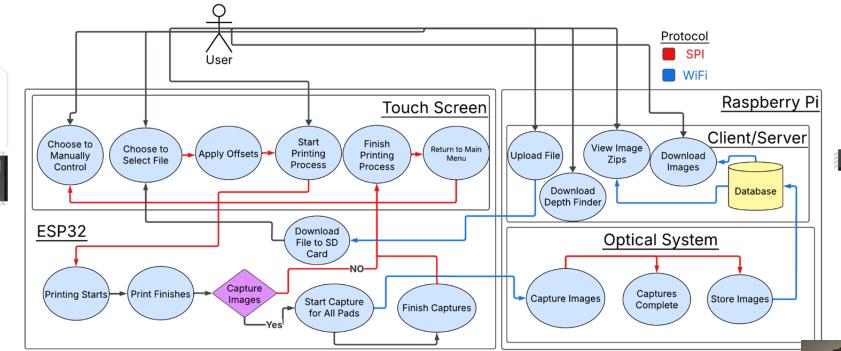
- Blue wired for V1, Retraced for V2
- Blue wired for V1, added resistors for V2
- Introduced SD card sensing
- Introduced USB-C for power delivery

COMM PROTOCOL

SPI

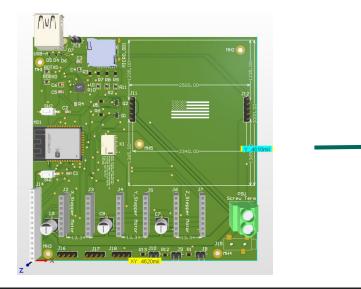
- ESP32 to Touch Screen
 - Display
 - \circ Touch
- ESP32 to SD Card Reader
- Cameras to Raspberry Pi

Why: With many peripherals connected to the ESP32, SPI was chosen to reduce the amount of pins needed as the Touch Screen display and touch, and SD Card Reader share the same SPI lines with separate Chip Selects


WiFi

- Raspberry Pi to ESP32
- Raspberry Pi to Website

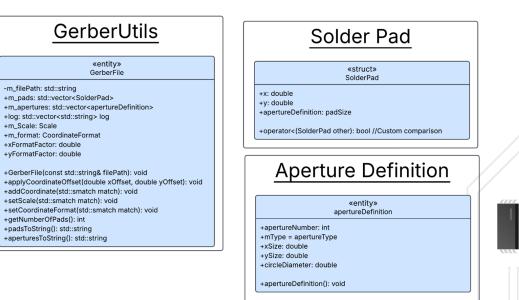
Why: The Raspberry Pi and ESP32 share this Protocol and the Website can be easily accessed after connecting to the Raspberry Pi's Access Point

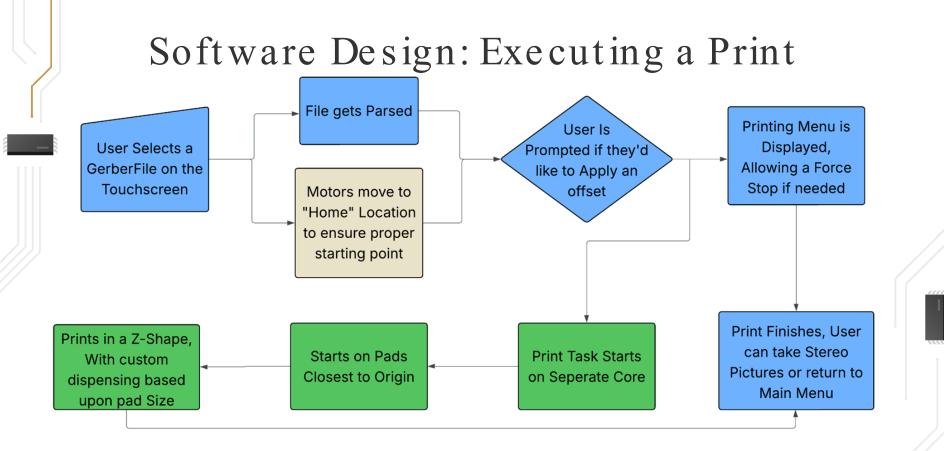

User Diagram

Software Design: Parsing Gerber Files

Objective: Automatically Parser Gerber Files to locate Surface Mount Pads on a X and Y Plane.

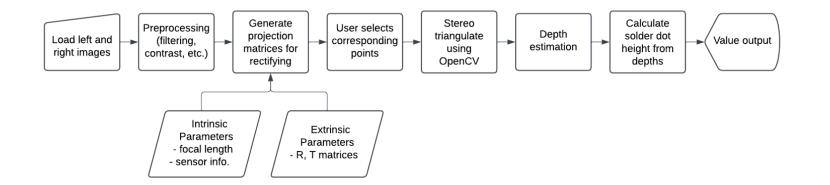
std::regex flashRegex(R"(X(-?\d+)Y(-?\d+)D03*)"); std::regex scaleRegex("%MO(IN|MM)*%"); std::regex formatRegex(R"(%FS(L|T)(A|I)X(\d)(\d)Y(\d)(\d)*%)"); std::regex edgeRegex(R"(X(-?\d+)Y(-?\d+)D0[12]*)"); std::regex apertureDefinitionRegex(R"(%ADD(\d+)([A-Z]),([\d.]+)(?:X([\d.]+))?*%)"); std::regex singleMoveRegex(R"((X|Y)(-?\d+)D02*)"); std::regex apertureSelection(R"(D(\d+)*)");


والمتحد والمتح	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
jujitjitjutjutjutjutjut	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · × × · · · · · · · · · ·	
	البدائي


Software Design: Parsing Gerber Files

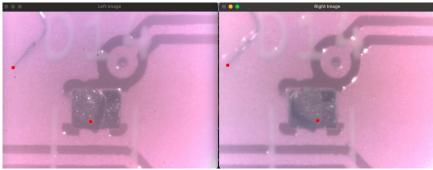
Features:

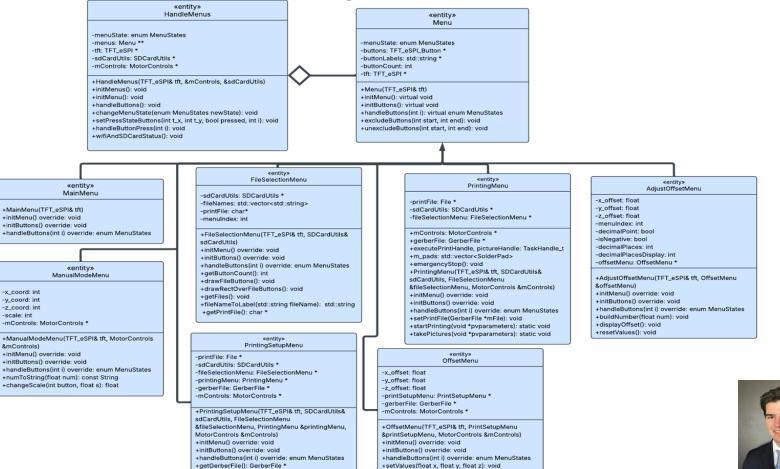
- Stores files Format Specification and Unit Selected
- Store Aperture Definitions (Pad Sizes)
- Locates each SMD Pad and stores it with it's Aperture Definition
- Custom sort of the pads utilizing a snake like track on the PCB
- Offset can be applied prior to printing in order to move origin to the bottom left of the PCB.
- Tested with:
 - Altium
 - Eagle
 - KiCad


Note: Each Color represents a separate Task Scheduled

Software Comparison: Vision Libraries

	OpenCV	SimpleCV	TensorFlow
Price	Free and open-source	Free and open-source	Free and open-source
Primary Purpose	Computer vision and image processing	Simplified interface for computer vision tasks	Machine learning and deep learning
Ease of Use	Moderate, involves coding knowledge	High, easy to use and beginner friendly	Moderate to difficult, requires knowledge of machine learning
Programming Languages	C++, Python, Java, JavaScript	Python	Python, C++, JavaScript, Swift, Java
Image processing capabilities	Extensive	Basic	Limited (mostly for data preprocessing)
Stereo vision capabilities	Stereo vision and depth maps	Basic	Limited
Video processing	Real-time video and image processing	Basic video support	Limited, other libraries necessary for integration


Software Design: Depth Estimation Flowchart


Software Design: Stereo Height Measurement

- Due to difficulties in reliably identifying corresponding pixels between the left and right images, producing a high-quality 3D reconstruction of the object area is not possible.
- Specular reflections in combination with low texture areas in the images further sabotage any efforts towards algorithmic pixel correspondence.
- For this reason, the stereo software has been reduced to a manual pixel correspondence which has to be done by the user.
- Solder dot heights have been successfully measured using manual pixel correspondence and stereo triangulation.

Software Design: Touch Screen

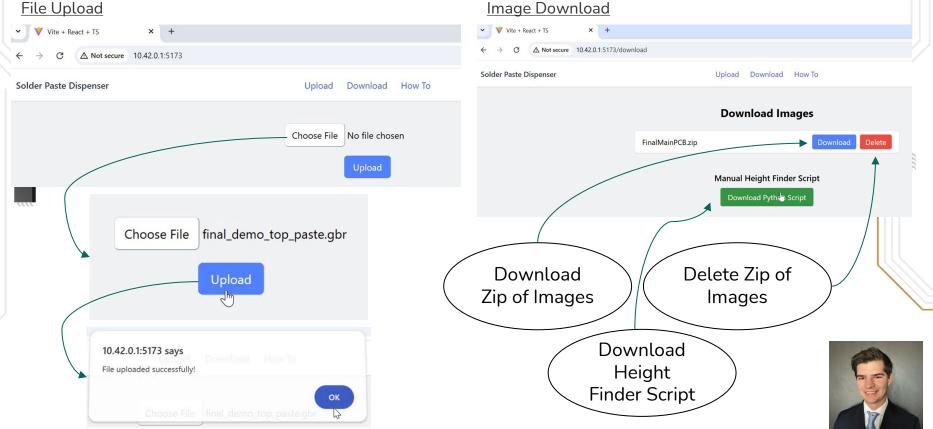
-scale: int

Software Design: Touch Screen Menus

Main Menu

Manual Mode Menu

File Selection Menu


Software Design: Motor and Dispense Controls

MotorDispenseControl -maxSpeed: int -maxAcceleration: int -dispenseDelay: int -xPadding: float -yPadding: float -dispenseThickness: float -sortSpacing: float -m Pads: std::vector<SolderPad> -mServer: ServerHandler * -fileName: String +StepsPerMMX: float +StepsPerMMY: float +StepsPerMMZ: float +zHeight: float +distanceToHomeX: float +distanceToHomeY: float +motorXLocation: float +motorYLocation: float +motorZLocation: float +pictureHeight: float +motorX: AccelStepper +motorY: AccelStepper +motorZ: AccelStepper +multiStepper: MultiStepper +MotorControls() +printSshape(): void +executePrint(std::vector<SolderPad> pads): void +dispensePaste(): void +setDispenseDelay(int delay): void +moveToOrigin(motorSelection m): void +moveToHome(): void +moveDistanceInMM(motorSelection m. float distance): void +moveToLocation(float xLocation, float vLocation): void +moveZUp(): void +moveZDown(): void +printPad(): void +SortPads(std::vector<SolderPad> pads): void +takePictures(): void +setServer(ServerHandler &mServer): void +setFileName(String fileName): void +setMPads(std::vector<SolderPad> pads): void

Software Design: Website/Client & Servers

Software Problems with Solutions

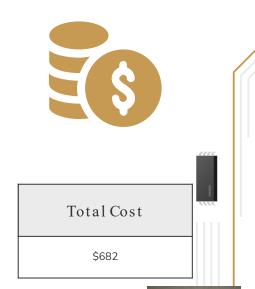
Touchscreen


- Problem: Buttons from other menus would trigger instead of the current menu displayed
- Solution: Create Menu abstract class to base all menus from and create a menu handler which uses the shared functions in the abstract class to handle all button presses

Raspberry Pi 4

- Problem: Raspberry Pi 4 CPU ISA is not compatible with current MongoDb releases
- Solution: Find unofficial MongoDb binaries that support the Raspberry Pi 4 CPU ISA

Progress Pictures



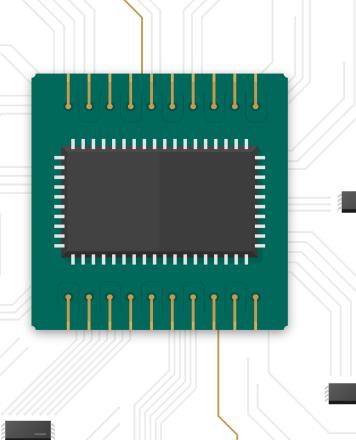
Progress Pictures

Budget and Financing

Component	Quantity	Cost per Component	Cost Sum
ESP 32 MCU	1	\$8	\$8
Touch Screen	1	\$25	\$25
Stepper Motors	3	\$20	\$60
Power Supply	1	\$25	\$25
PS Regulator	1	\$12	\$12
Cameras	2	\$40	\$80
Optics	2	\$111	\$222
Raspberry Pi	1	\$110	\$110
DRV8825 PCB	3	\$15	\$45
PSUPCB	1	\$40	\$40
Main PCB	1	\$55	\$55

Progress and Plan

	January		February		March		April	
	Week 1 & 2	Week 3 & 4	Week 1 & 2	Week 3 & 4	Week 1 & 2	Week 3 & 4	Week 1 & 2	Week 3 & 4
PCB Designs and Creation								
Optical Inspection System Design								
ESP 32 Code Developmet								
Website and Server Code Development								
PCB Testing								
Optical Stereoscopy System								
Optical System Code Development								
Integrate and Test								
Final Design								



Work Distributions

Name	Tasks for Project				
Nathan Boucher	Code to take XYZ coordinates and translate to stepper motors movement and dispensing, Code to convert Gerber Files, Part of Code for SD Card Utilities, assisted PCB Design				
Mikell Alfonso	PCB design and assembly. PCB design for Main Board, Stepper Motors Driver Boards, and Power Regulator Board. Administrative Content and Video-Editing.				
Elizar Tsymlyakov	Optical System Design and Image Processing Software for Stereoscopy and 3D reconstruction				
Edward Weir	Code for Display GUI, Website frontend and backend, Part of Code for SD Card Utilities, Server for Microcontroller, Server for Optical Software Connection				

Thanks!

