Lunar Exploration using Augmented Reality (LEAR)

Group 6: Teo Malendevych Sammy Lee David Brown Yongsheng Xu

Photonic Engineering Photonic Engineering Computer Engineering Electrical Engineering

Sponsored By: George Jackson Foundation NASA Florida Space Grant Consortium

Project Overview

Inspiration

HUMANITY'S RETURN TO THE MOON

Goals and Objectives

General:

- Display of Extravehicular activity (EVA) tasks
- Communication with Mission Control
- System Tutorial

Navigation and Task Assistance:

- Guidance from point A to point B
- Location of points of interest, lander, partners
- Available notes and directions for tasks
- Ability to capture video and images
- Assistance with high-contrast areas on the moon

Peripheral Devices:

- Wrist-mounted optical heart rate monitor and pulse oximeter
- Outside temperature sensor
- Wireless communication with headset

Requirements and Specifications

- Guide user in real-time to any marked coordinates of interest within a range of 2 kilometers from starting position.
- Monitor suit vitals (O2, H2O, etc) and alert user if values are abnormal or approach dangerous levels.
- Provide a method for taking images and videos
- Monitor user pulse and alert if value approaches abnormal levels (>100 bpm or <60 bpm
- Image Processing should not be less than 30 frames per second.
- Heart rate monitor PCB: 5 cm x 5 cm
- Measurement of heart rate and SO₂ accurate to 10%
- Wireless transmission of 10 ft
- Temperature measurements accurate to 2%

External System Design

Hardware Design

- External sensors to monitor suit (and astronaut) vitals
 - Temperature
 - Heart Rate
- Microprocessor receives sensor data
- Wirelessly transmitted via bluetooth

Heart Rate Monitor and Pulse Oximeter Theory

Heart Rate Monitor and Pulse Oximeter Part Selection & Design

IR LED: Vishay Semiconductors VSMY2943G, Emitter Wavelength: 940 nm, LxW: 5.8 mm by 2.3 mm Red LED: Cree XLamp XP-E2 LED, Emitter Wavelength: 650-670 nm, LxW: 3.5 mm by 3.5 mm, Photodiodes: Osram LPT 80A Phototransistor, Spectral Range of Sensitivity: 450 - 1100 nm, LxW: 5 mm by 6 mm

Heart Rate Monitor and Pulse Oximeter Testing

SPO₂ Calibration

$$R = \frac{\ln \frac{I_{\max}(\lambda_1)}{I_{\min}(\lambda_1)}}{\ln \frac{I_{\max}(\lambda_2)}{I_{\min}(\lambda_2)}}$$

Peak Detection

```
Algorithm: Finding Min and Subsequent Max Real-Time
Input: Voltage values
Output: min and max
temp = 0;
flag = 0;
for index, value in signal do
   if value < temp
       if value <= min
           min = value;
       else if flag == 1
           break;
       else
           flag = 1;
       end
    else if value > temp
       max = value;
       flag = 0;
    end
   temp = value;
end
return max, min
```


Heart Rate Accuracy

	SAMPLE SIZE	AVERAGE ERROR
70-75	6	2.63
76-80	31	2.58
81-85	19	4.55
86-90	26	2.27
91-95	18	2.49
96-100	2	4.05
101-105	1	4.76

Microcontroller -Atmega32<u>8p-pu</u>

- Same with MCU on Arduino
- Program by Arduino IDE(Burn the bootloader)
- Programe with C/C++
- Easy to find documentation we need

PCB for Microcontroller Module

Wireless Communication Module

Goal: Serial communication streams between all sensors, microprocessing units, and the HoloLens

Parts we used: FS1000A Wireless RF Module, HC-05 Bluetooth Module,

nRF24L01 Transceiver, Zigbee Wireless Communication Module, DS18S20 Digital Temperature Sensor

Temperature Sensor

DS18S20 Temperature Sensor

- 3-pin connection
- One-wire structure (use Dallas Temperature Library)
- 4.7K ohm pull-up resistor
- 5V operating voltage

HC-05 Bluetooth Module

- 4-pin connection
- Works on 5V or 3.3V with resistor
- Easily interface with other bluetooth device

Theory use in project:

HC-05 will send data (temperature, heart rate,

oxygen saturation to the computer that

connected to the HoloLens server, then server send data to HoloLens)

PCB Testing

Before making PCB, we need to decide what ports we need and how can we connect it, so we make a schematic diagram to show all ports needed be connected to a breadboard.

PCB for Wireless Communication Module

Sensor data using C# console application

- Desktop computer receives data via C# console application
- C# console application prints temperature to terminal

Microsoft Visual Studio Debug Console Welcome, enter parameters to begin Available ports: COM3 COM4 COM7 Port Name: com7 Baud rate: 9600 Beging Serial... Serial Started. Ctrl+C to exit program Send: 27 27 27 2727 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27

Sensor data with C# User Interface Application

Software Design

Software Design Highlevel Overview

- NASA objectives:
 - Control/tutorial
 - EVA System State
 - Illumination
 - Navigation
 - Geological Sampling

- User starts UI
- Background processes record suit vitals (if mission starts)
 - Interfaces with Sampling application to warn astronaut if necessary

Navigation

LEGEND					
User	Illumination				
Interface	Application				
Control	Navigation				
Application	Application				
Sampling	EVA State				
Application	Application				
Application Interfaces					

- Navigation application tethers astronaut to "home" location while they engage on mission
- Updates 2D navigation map in realtime relative to geological site
- Tracks current coordinates
- 3D directional arrow directs astronaut to geological site, home

Sampling

- Sampling (or "Mission") application • downloads all details about mission
- Displays notebook for mission ٠ containing instructions, tasks, tools, and other important information
- Interfaces with both Navigation ٠ and EVA State components

Illumination

- Illumination component is toggled on/off
- If on, the Hololens 2 video stream is processed to deal with high contrast environment

HoloLens Development Environment

- Windows 10 OS, Visual Studio IDE, and Unity 3D engine
- Microsoft-mixed reality toolkit

Software Organization

liser - id: int firstName: string lastName: string \wedge Extends Extends Mission Mission Control Astronaut id: int astronauts[]: Astronaut[1..*] home: (double, double) missions[: Mission[1..*] title; string currPosition: (double, double) - notebook: Notebook[1..*] <string. double> vitals: Vital[1..*] onMission: bool complete: boolean - <string, bool> is Safe: Vital[1..*] - suit Suit - started: boolean - mission: Mission - started_at: DateTime Instructions Vital instructions: MediaType[1..*] - id: int type: String Task Suit - name: string - unit: string tasks: MediaType[1..*] id: int Note - current: double safe: hoolean FieldNotes - min: double -<string, Vital> vitals: - id: int - max double field_notes: MediaType[1..*] - datastream: <Vital, string[]> - title: String - avg: double - date: DateTime read: bool Tools - note: string datastream: <double, string> format enum MediaType tools: MediaType[1..*] - type: enum string \triangle Extends Telemetry << enumeration >> MediaType time: double Switch Text - timer: strina Audio Video - numSwitch: int - start_at: DateTime on: boolean - heart bpm; double - state; boolean p_sub: double Image p_suit: double
 p_suit: double
 v fan: double - UIA[]: UIA[1..*] - DCU[]: DCU[1..*] DataModel battery_percent: double api: HttpClient - battery_out: double connected: boolean - battery cap: double - t_battery: string \triangleleft cap water: double -t_water: string Extends - p h20 a; double p_h20_l: double t_oxygenprimary: double t_oxygensec: double Extends Extends ox_primary: double - ox secondary double - t_oxygen: string p o2: double UIA DCU - rate_o2: double - p_sop: double - numUIA: int numDCU: int - rate_sop: double data; string - is On: boolean - emu_1: boolean values: enum - emu 2 boolean - ev1_supply: boolean - ev1_waste: boolean - ev2 supply; boolean - ev2_waste: boolean - ev1_o2: boolean - ev2_o2: boolean - o2 vent: boolean - depress_pump: boolean

David

- Backend -- processes data
 - SuitsUIConsole namespace
- Frontend -- sends and receives data from backend, updates UI
 Unity 3D engine

Dataflow between UI and codebase

ierarchy	🔻 🏞 🖌 Mission Manager (Script)	
	Script	
	Heartrate Value	
Directional Light	Heartrate Safety	
MixedReality LoolKit	Oxygen Value	
▷ Mixed Reality Playspace	Oxygen Safety	
Illumination	Temperature Value	
▷ Ô EVASysState	Temperature Safety	
► Sampling	Heartrate Display	TVital (TextMeshProUGUI)
▷ () UserInterface	Oxygen Display	TVital (TextMeshProUGUI)
	Temperature Display	TVital (TextMeshProUGUI)
	One indicator	DT and all discourses (On site Day days at

Mission Control

<string, double> vitals: Vital[1..*]

<string, bool> is Safe: Vital[1..*]

astronautsII: Astronaut/1..*1

- missions[]: Mission[1..*]

Unity (Frontend)

oid UpdateVitals()

- Each application is an individual "Game Object" in Unity
 - Encapsulate outlined classes
- Unity frontend instantiates a backend Mission Control object at run-time
- Game Objects use Mission Control object to process data and update UI

Illumination feature

Illumination Outline

- Requirements
- Thresholding
- Contrast Limited Adaptive Histogram Equalization
- Implementation
- Tested Systems and Devices
- Issues

Illumination Requirements

- Image Processing through a camera in real time.
- Frames per second (fps) should be a common digital standard being 24-30 fps for movies or 60 fps.
- Gray Scale Processing was chosen for speed and simplicity.
- Main objective is increasing contrast in areas of interest

Thresholding

- Original Solution based on processing times
- Theory
 - Choosing a value and adjusting the image based on their relation to the chosen value.
 - Binary
 - Gray Level
- Not incredibly useful for our problem

Contrast Limited Adaptive Histogram Equalization (CLAHE)

- Utilizes the Histogram Equalization Technique
- Histogram Equalization
 - \circ Takes the values of the images and tries to equalize the frequency in which they appear.
 - Useful when there might be glare or washed-out images.
 - Global Transform

CLAHE cont.

- Adaptive Histogram Equalization
 - Tile Size (Neighborhood)
 - NxM grid
 - At Borders Bilateral Interpolation
- Contrast Limited
 - Clip Limit
 - Noise Limiting

Implementation

- Python (Prototyping)
 - OpenCV
 - Google Colaboratory (Jupyter Notebook)
 - Anaconda Spyder
 - Didn't display updated matrixes well
- C#
 - Emgu.CV (.Net wrapper of OpenCV)
 - Visual Studio
 - Better Graphical User Interface (GUI)
 - \circ Testing.

Issues

- The original python programming did not display updated frames very well
- Multiple Filters at once created stuttering of the frame
- Preprocessing Technique
- Permissions from Microsoft for HoloLens Access

Additional Applications

- Post Processing Technique
 - Can be used in conjunction with a post processing technique to clear isolate certain parts of the image
- Reconstruction
 - 3D mapping for future exploration

Systems and Devices

- Webcam with Windows (Video)
- Webcam with OSX (Video)
- Pi Camera with Linux (Video)
- Dash Cam Data (Video)
- Camera Images (.jpeg, .tiff, ...)

Budget and Finances

Budget								
Item	F	Price/per unit	Quantity		Price/total			
Microsoft Hololens II	\$	3,500.00	1	\$	3,500.00			
PCB Board		20.00	5	\$	100.00			
Photosensor		10.00	1	\$	10.00			
Microcontroller		30.00	1	\$	30.00			
Temperature Sensor		11.00	1	\$	11.00			
Push Button		1.00	10	\$	10.00			
Wireless Communication Module		9.00	1	\$	9.00			
Pressure Sensor	\$	9.00	1	\$	9.00			
LED Sources	\$	2.00	10	\$	20.00			
Wiring	\$	0.50	20	\$	10.00			
Housing for External Sensors		15.00	1	\$	15.00			
Wristwatch Housing		15.00	2	\$	30.00			
LED Detector		5.00	2	\$	10.00			
Total Expenses				\$	3,764.00			
Funding								
Florida Space Grant Consortium				\$	2,000.00			
George Jackson Foundation				\$	1,000.00			
Personal Contributions				\$	1,000.00			
Total Funding				\$	4,000.00			
Surplus				\$	236.00			

Thank you!