# Photo-TANKS



#### Group 1

Dylan Perkowski - Photonics Engineer Joshua Walton - Photonics Engineer Skyler Burns - Electrical Engineer Joshua Frazer - Computer Engineer



### **Project Description**



- Demonstrated on a remote control tanks with 1st person perspective
- Friendly and enemy targeting indication
- Target acquisition system
  - Target recognition and detection



### Motivation



Friendly Fire: Operation Desert Storm

- 9 M1 Abrams destroyed 7 caused by friendly fire
- 28 Bradley IFV damaged/destroyed 20 caused by friendly fire
- Led to development of the Battlefield Combat Identification System
  - o Project abandoned in 2003

Current target acquisition process is slow and can leave soldiers at risk

We had two questions:

**I**)

- 1. What if the US goes to war against a country that also utilizes our military equipment and technology?
- 1. How would we be able to differentiate between friendly vehicles and aircraft, and hostile counterparts if the battlefield is composed of two sides utilizing the same equipment?



### Goals & Objectives



- Rapid target identification
- 360° coverage, autonomous target acquisition
- Maximize ease of use
- Demonstrated on a tank platform, with the hope of integration for other platforms
- Designed so that any user could understand and operate the system



### Requirements & Specifications

| Tank Specifications           |                               |                                                                                           |  |  |  |  |  |
|-------------------------------|-------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|
| Component(s)                  | Parameter                     | Specification                                                                             |  |  |  |  |  |
| Laser Diode                   | Output Wavelength             | 635 nm                                                                                    |  |  |  |  |  |
| Phototransistor(s)            | Relative Spectral Sensitivity | > 90%                                                                                     |  |  |  |  |  |
| Laser Beam                    | Dispersion                    | Minimal dispersion up to 10 m                                                             |  |  |  |  |  |
| Plano-Convex Lens             | Far Focal Plane               | > 1 m                                                                                     |  |  |  |  |  |
| Operator Camera               | Image Delay                   | < 1 s                                                                                     |  |  |  |  |  |
| Direction Control             | Controllable Function         | Can use controller to control the<br>tank and move it via the treads                      |  |  |  |  |  |
| Rotating Turret               | Controllable Function         | Can use controller to rotate<br>turret 360° independent of<br>direction of travel         |  |  |  |  |  |
| Rotating Turret               | Rotation Speed                | ≥ 30° per second                                                                          |  |  |  |  |  |
| Barrel Elevation<br>Mechanism | Contrallable Angle            | Can use controller to adjust<br>elevation/depression of the tank<br>barrel in a 30° range |  |  |  |  |  |
| User Input                    | Input Delay                   | < 1 s                                                                                     |  |  |  |  |  |
| Connection                    | Range                         | > 2 m                                                                                     |  |  |  |  |  |
| Treads                        | Performance                   | Photo-TANKS treads will be able<br>to climb & cover different<br>terrains                 |  |  |  |  |  |

| Tank Specifications         |                              |                                                                                                                                   |  |  |  |  |  |
|-----------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Component(s)                | Parameter                    | Specification                                                                                                                     |  |  |  |  |  |
| Joysticks                   | Useability                   | Controller joysticks on the<br>screen will be large and easy to<br>use                                                            |  |  |  |  |  |
| Laser Diode (Low<br>Power)  | Target Identification        | Operator uses low power laser<br>beam (< 50% power) to trigger<br>target identification                                           |  |  |  |  |  |
| Laser Diode (High<br>Power) | Weapon Firing                | Operator uses high power laser<br>beam (> 50% power) to 'fire' the<br>tank's cannon                                               |  |  |  |  |  |
| Jetson Nano 2GB AI Kit      | Image Processing & Decisions | Al performs image processing<br>and decision making to provide<br>crew with information<br>determined by the acqusition<br>system |  |  |  |  |  |
| Power                       | Power Usage                  | Maximum amount of power<br>usage is 25 W                                                                                          |  |  |  |  |  |
| Battery                     | Batery Life                  | Photo-TANKS shall have a<br>continuosly running battery life<br>of about 4 hours                                                  |  |  |  |  |  |
| Tank Body                   | Weight                       | The tank shall not weigh > 30 lbs                                                                                                 |  |  |  |  |  |
| Laser Diode                 | Safety Standard              | Photo-TANKS must follow the<br>safety standards for a class 3R<br>laser                                                           |  |  |  |  |  |

## Constraints



| Economic        | Partially self-funded, performance vs. cost. And, partially funded for the more<br>expensive parts. |
|-----------------|-----------------------------------------------------------------------------------------------------|
| Time            | ~3 months to complete; Waiting for parts                                                            |
| Health & Safety | Class 3R laser diode; Mechanical components; Weight of overall system.                              |
| Manufacturing   | Availability of usable parts while being within our price range might restrict our<br>project.      |

## Advanced Block Diagram





## Part Consideration: Batteries

- Alkaline Batteries
  - Lasts long, cheap
  - Would need multiple to reach desired voltages
  - Good power solution for various components (ie: tread motors or the microcontroller)

| Battery                    | Туре              | Voltage<br>Produced (V)       | Capacity<br>(mAh) | Cost (\$)                        | Lifetime<br>(Unused)      | Lifetime<br>(Used) |
|----------------------------|-------------------|-------------------------------|-------------------|----------------------------------|---------------------------|--------------------|
| Alkaline,<br>Duracell      | Primary<br>Cell   | 1.5 (AA), 12<br>(specialized) | 2500              | 6-8 (AA), ~5<br>(specialized, 2) | 10 years<br>(AA), 5 years | 2-5 years          |
| Alkaline,<br>Energizer     | Primary<br>Cell   | 1.5 (AA), 12<br>(specialized) | 2500              | 6-8 (AA), ~4<br>(specialized, 2) | 10 years<br>(AA), 5 years | 2-5 years          |
| Charmast<br>Power Bank     | Secondary<br>Cell | 5                             | 10000             | 21.99                            | 6 months                  | 6-30 years         |
| Lithium Ion,<br>ICR-18650K | Secondary<br>Cell | 3.7                           | 2600              | ~5 (for one)                     | 6 months                  | 6-30 years         |

- Charmast Power Pack
  - Lasts long, great amount of capacity, a good amount of voltage, and a ok price.
  - O Charged the Jetson Nano
  - ICR-18650K
    - Lasts long, small capacity and slightly worse voltage than the INIU.
    - Charged the barrel's servo-motor





#### Part Consideration: Tank - Treads

- Pre-built treads/chassis
- Acceptable load capacity
- Plenty of mounting points for hull

| Tank Treads | Price (\$) | Dimensions<br>(LxWxH)      | Load capacity<br>(kg) | Nearly<br>All-Terrain? |       |
|-------------|------------|----------------------------|-----------------------|------------------------|-------|
| B08P49VLPS  | 79.99      | 13.38x9.44x4.8<br>inches   | 5                     | $\checkmark$           | - Com |
| B096DKCCBT  | 76.99      | 10.82x7.67x3.54<br>inches  | 5                     | $\checkmark$           |       |
| B08QZB5MFR  | 69.00      | 11.41x9.84x0.275<br>inches | 4                     | $\checkmark$           |       |



B096DKCCBT



### Part Consideration: Tank Treads Motor



- 25 Geared Motor prebuilt into Tank Tread Assembly
- Cost effective solution considering it was included with Tank Assembly

| Motor               | Price (\$) | Speed, No<br>Torque (RPM) | Speed, Max<br>Torque ( RPM) | Motor Size<br>(mm) | Motor Length |
|---------------------|------------|---------------------------|-----------------------------|--------------------|--------------|
| MG16B-060<br>-AB-00 | \$37.03    | 213                       | 160                         | 17                 | 38           |
| 1271-12-21          | 25.63      | 125                       | 80                          | 27                 | 36           |
| 25 Geared<br>Motor  | -          | ~150                      | ~100                        | 25                 | 39.5         |



## Part Consideration: Turret Rotation Motor



- Manufactured by Greartisan
- Inexpensive
- Slow RPM to allow better control for user
- Will meet rotation specification of 30°/s
- Can handle up to 15 Kg.cm of torque if undervolted to 10RPM

|                  | Туре         | Rotation<br>Speed<br>(No-Load)<br>(RPM) | Stall<br>Torque<br>(kg.cm) | Gear<br>Material  | Optimal<br>Working<br>Voltage | Rotation<br>Direction<br>& Speed<br>Control | Cost (\$) |
|------------------|--------------|-----------------------------------------|----------------------------|-------------------|-------------------------------|---------------------------------------------|-----------|
| 24V DC<br>Geared | DC<br>Geared | 50                                      | 4                          | Steel/Cop<br>per  | 24                            | ~                                           | 14.99     |
| 12V DC<br>Geared | DC<br>Geared | 50                                      | 3.97                       | Steel/Cop<br>per  | 12                            | ~                                           | 14.99     |
| DF15RSM<br>G     | Servo        | 62.5                                    | 19.3                       | Plastic/St<br>eel | 7.4                           | ~                                           | 18.05     |
| B07K9KP<br>DNV   | DC<br>Geared | 50                                      | 3.97                       | None              | 12                            | x                                           | 14.99     |





### Part Consideration: Barrel Elevation Servo Motors

- Fits size requirement to fit inside turret head
- Expensive, great performance, very accurate movement steps
- Will meet barrel elevation adjustment requirement of 30°

|              | Stall<br>Torque<br>(kg∙cm) | Operatin<br>g Travel<br>(°) | Optimal<br>Working<br>Voltage<br>(V) | Pulse<br>Cycle<br>(ms) | Gear<br>Material     | Dimensions<br>(mm)    | Cost<br>(\$) |
|--------------|----------------------------|-----------------------------|--------------------------------------|------------------------|----------------------|-----------------------|--------------|
| HXT900       | 1.6                        | ± 45                        | 4.8                                  | 20                     | Nylon                | 23 x 12 x 23          | 3.49         |
| HD-1440<br>A | 0.6                        | ± 90                        | 4.8                                  | 2.2                    | Plastic              | 20.2 x 8.5 x<br>20.2  | 6.34         |
| MG90D        | 2.1                        | ± 45                        | 4.8                                  | 1.0                    | Steel/Copp<br>er Mix | 22.8 x 12.2 x<br>28.5 | 9.95         |







### Part Consideration: Laser Diode



1.0

L635P5 Sample Spectrum

- 5 mW laser diode (635 nm)
- Inexpensive

|           | Wavelength<br>(nm) | Power<br>(mW) | Typ./Max<br>Current<br>(mA) | Diameter<br>(mm) | Beam<br>Divergence<br>(Max) (deg) | Cost<br>(\$) |
|-----------|--------------------|---------------|-----------------------------|------------------|-----------------------------------|--------------|
| L635P5    | 635                | 5             | 30/45                       | 5.6              | 10                                | 25.21        |
| HL6320G   | 635                | 10            | 70/95                       | 9                | 11                                | 43.02        |
| HL6322G   | 635                | 15            | 85/100                      | 9                | 11                                | 71.96        |
| HL63163DG | 633                | 100           | 170/230                     | 5.6              | 13                                | 307.32       |





### Part Consideration: Lens

- Plano-convex lens
- 9 mm focal length

|        | Diameter (mm) | Focal Length<br>(mm) | Radius of Curvature (mm) | Cost (\$) |
|--------|---------------|----------------------|--------------------------|-----------|
| LA1024 | 2             | 4                    | 2.1                      | 63.55     |
| LA1026 | 2             | 6                    | 3.1                      | 63.55     |
| LA1036 | 3             | 6                    | 3.1                      | 63.55     |
| LA1039 | 3             | 9                    | 4.7                      | 63.55     |



### Lens: Zemax Simulation



LA1039 Simulated in Zemax (Imaged)

- Total axial length: 10.0105 m
- Spot size at stop: ~ 4 mm

• Axial length at focus: 0.511 m

LA1024 Simulated in Zemax

- Total axial length: 10.0050 m
- Spot size at stop: ~ 0.5 mm
- Axial length at focus: 0.227 m



## Part Consideration: Optical Sensors



- Optical sensor must be able to collect our laser diodes wavelength: 635nm
- Will meet requirement of spectral sensitivity > 90 %
- Higher Spectral Sensitivity allows for more accurate identification of various laser intensities

|                       | Туре                 | Wavelength<br>Sensitivity<br>Max (nm) | Diameter<br>(mm) | Dark<br>Current<br>(nA) | Responsivity<br>(A/W) | Cost (\$)<br>(for 1) |
|-----------------------|----------------------|---------------------------------------|------------------|-------------------------|-----------------------|----------------------|
| TEP T5<br>700         | Photo-<br>Transistor | 800                                   | 5                | 100                     | 0.95                  | 0.77                 |
| EAALS<br>T05RD<br>MA0 | Photo-<br>Transistor | 700                                   | 5                | 100                     | -                     | 0.17                 |
| FDS01<br>0            | Photo-<br>Diode      | 1100                                  | 1                | 0.3                     | 0.44                  | 48.15                |
| FD11A                 | Photo-<br>Diode      | 1000                                  | 1.1              | 0.002                   | 0.6                   | 14.58                |







### Laser Diode Evaluation Board

#### MLDEVAL

- Thorlabs Laser Diode Driver Evaluation Board
- o Multiple Chip Support
- Compatible with MLD203CLN Constant Current Driver
- o 5V Powered
- Supports all Thorlab Laser Diode Pin Codes
- On board Current Control via Potentiometer





### Constant Current Laser Diode Driver

#### • MLD203CLN

- Thorlabs Low Noise Constant Current Laser Driver
- Provides a constant current to the laser diode at a given voltage
- Generally paired with a filtered voltage source and a potentiometer to control output
- Has built in soft-start and brownout protection to prevent the laser diode from current spikes, hence burning out the laser diode.





## Part Consideration: Bluetooth Modules



- Intel 8265NGW (Jetson Nano)
  - Jetson Nano Community recommended Transceiver
  - Bluetooth 4.2 and Wifi Capabilities
  - o M.2 connection: PCIe, USB and UART
  - o Antenna Connections for extended range
  - Extended guides on setup and functionality with Jetson Nano
  - 22mm x 30mm x 2.4mm, 12mm x 16mm x 1.8mm
  - o 2.6 Grams

- HiLetGo HC-05 (MSP-EXP430FR6989)
  - Inexpensive Module (\$8.59)
  - Proven compatibility with MSP430
  - Multiple setup guides using MSP430
  - o 37.3mm x 15.5mm
  - Small current draw (10mA)
  - o 3.5 Grams



## Part Consideration: Micro Controller Units



|                | Jetson Nano<br>Developer Kit                 | Raspberry Pi 4                                             | Google Coral<br>Dev Board                               | Intel Up<br>Squared Al<br>Vision X<br>Developer<br>Kit |
|----------------|----------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|
| Company        | NVIDIA                                       | Sony                                                       | Google                                                  | Intel                                                  |
| Cost           | \$60                                         | \$45                                                       | \$130                                                   | \$419                                                  |
| Released       | March 2019                                   | June 2019                                                  | October 2020                                            | 2018                                                   |
| Processor      | ARM<br>Cortex-A57<br>64-bit @ 1.42<br>GHz    | BCM2711 chip<br>with ARM<br>Cortex-A72 64-bit<br>@ 1.5 GHz | Cortex A-53<br>64-bit @ 1.5 GHz                         | Atom<br>X7-E3950 @<br>1.6 GHz                          |
| Memory         | LPDDR4<br>SDRAM                              | LPDDR4 SDRAM                                               | LPDDR4 SDRAM                                            | LPDDR4<br>SDRAM                                        |
| GB Options     | 2GB, 4GB                                     | 1GB, 2GB, 4GB,<br>8GB                                      | 1GB, 4GB                                                | 4GB, 8GB                                               |
| Wifi/Bluetooth | Capabilities                                 | Included                                                   | Capabilities                                            | Capabilities<br>or Included                            |
| Ports          | Micro SD,<br>HDMI, 2<br>ethernets, 5<br>USBs | 3 USBs, audio<br>jack, 2 HDMls,<br>ethernet                | 4 USBs, 3 audio<br>jacks, HDMI,<br>ethemet, micro<br>SD | HDMI, 6<br>USBs, 2<br>ethernets                        |
| GPU            | 128-core<br>Maxwell                          | Broadcom<br>VideoCore VI                                   | Vivante GC7000<br>lite                                  | Intel® HD<br>Graphics 505                              |

#### Jetson Nano Developer Kit

• Carried the best GPU for the operations we were wanting to implement

#### Raspberry Pi 4

• Although, it carried a good variety of RAM options and slightly better CPU clock speeds, it fell short due to the GPU power.

#### Google Coral Dev Board

- Since the only options were the 1GB and 4GB, we would have been forced to go with the 4GB which would cost us more for something unnecessary.
- Intel Up Squared AI Vision X Developer Kit O Too powerful for what we needed. The cost was also too great.





## Part Consideration: Micro Controller Units MSP430 Overall



#### • MSP-EXP430FR6989

- Cheap cost
- Previous experience with board
- MSP platform is an industry standard in academic environments
- Tons of sample projects and tutorials available from community and manufacturer







## Part Consideration: Micro Controller Units MSP430 Technical Aspects

#### • MSP-EXP430FR6989

- 18 GPIO pins for multi-peripheral support (83 total GPIO)
- 5 PWM pins provides support for multiple motors without needing aftermarket boards
- Built in 16 channel 12-bit ADC
- Low power operation modes for longer run times





## Qunqi L298N H-Bridge Motor Driver Controller



- o Cheap Cost
- Control DC Voltage for two motors
- Small Form Factor
- Allows up to 12V to each motor
- Control signal allows for switching polarity
- Compatible with any MCU with digital pins







## Part Consideration: Barrel Camera

|                     | Arducam NoIR<br>IMX219-AF<br>Programmable/Auto<br>Focus IR Sensitive<br>Camera Module for<br>Nvidia Jetson Nano | Raspberry Pi<br>Camera Module 2           | IMX219-77 8MP<br>Camera with 77°<br>FOV - Compatible<br>with NVIDIA Jetson<br>Nano/ Xavier NX |
|---------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------|
| Megapixels          | 8                                                                                                               | 8                                         | 8                                                                                             |
| Photosensitive Chip | Sony IMX219                                                                                                     | Sony IMX219                               | Sony IMX219                                                                                   |
| Resolution          | 3280 × 2464 pixels                                                                                              | 3280 × 2464 pixels                        | 3280 × 2464 pixels                                                                            |
| Horizontal FOV      | 65 degrees                                                                                                      | 62.2 degrees                              |                                                                                               |
| Vertical FOV        | 51 degrees                                                                                                      | 48.8 degrees                              |                                                                                               |
| Diagonal FOV        | 77.6 degrees                                                                                                    |                                           | 77 degrees                                                                                    |
| Frame Rate          | 30fps@8MP,<br>60fps@1080p,<br>180fps@720p                                                                       | 1080p30, 720p60<br>and 640 ×<br>480p60/90 | 30fps                                                                                         |
| Price               | ~\$40                                                                                                           | \$25                                      | ~\$20                                                                                         |

- High resolution (3280 x 2464)
- Acceptable FOV
- Acceptable Frame Rate
- Inexpensive
- Plug and Play with Jetson





#### Software Design: Processes



- Basic movement (Left track, right track, turret base, and turret barrel)
  - Activate left motor and right motor for tracks.
  - Activate movement for turret base and barrel
- Keep functionality for inputs (All Cameras, Phototransistors, Controller)
  - Receive feed from camera
  - Poll for phototransistor changes
- Outputs process like they should (Controller, Camera feed , Laser)
  - Process the live feed from camera to the controller to display to user via gstreamer
- Internal processes (Movement, PIN I/O's, Triggers, Transceivers, AI Video Processing)



## Software Design: Jetson Nano 2GB Developer Kit Responsibility

• Process all AI functionality

- Receives all the camera feed to process for the remote to see bounding boxes and identification of what is being seen
  - Sent over stream through local network
- Responsible to send finished processed video to stream with gstreamer



## Software Design: Types of Al Video Processing

• Object Detection

 Uses bounding boxes due to identify each individual object whether or not they are in the same class.



DOG, DOG, CAT

#### • Image Recognition

 Less specific object detection.
Just classifies without bounding boxes.



CAT



## Software Design: Software Flowchart





## Software Design: What is being processed?

- Viewing certain objects with bounding boxes
  - Household objects
    - **Ex: Keyboard, TV, Monitor**
  - Vehicle
    - Ex: Trucks, Car, Airplane
  - Table
    - Ex: Desk
  - Chair
    - Ex: Office Chair
  - Person
    - Ex: People



## Software Design: Convolutional Networks Considerations

| Model Application F        | Framework NVIDI     | NVIDIA      | Raspberry   | Raspberry Pi 3 + Intel Neural | Google Edge     | SSD Mobilenet-V2 | Object TensorFlow             | TensorFlow          | 39 FPS  | 1 FPS  | 11 FPS  | 48 FPS  |       |
|----------------------------|---------------------|-------------|-------------|-------------------------------|-----------------|------------------|-------------------------------|---------------------|---------|--------|---------|---------|-------|
|                            |                     |             | Jetson Nano | Pi 3                          | Compute Stick 2 | TPU Dev Board    | (300×300)                     | Detection           |         |        |         |         |       |
| ResNet-50                  | Classification      | TensorFlow  | 36 FPS      | 1.4 FPS                       | 16 FPS          | DNR              | Incention V/                  | Classification      | PuTorch | 11 505 | DNP     | DNR     | 0 505 |
| (2547224)                  |                     |             |             |                               |                 |                  | (acc. coc)                    | otassincation       | Pyloren | 111193 | DINK    | DINK    | 7775  |
| 0.00                       |                     |             |             |                               |                 | 1.1.2.1.1.1      | [299×299]                     |                     |         |        |         |         |       |
| MobileNet-v2               | Classification      | TensorFlow  | 64 FPS      | 2.5 FPS                       | 30 FPS          | 130 FPS          |                               |                     |         |        |         |         |       |
| (000,000)                  |                     |             |             |                               |                 |                  | Tiny YOLO V3                  | Object<br>Detection | Darknet | 25 FPS | 0.5 FPS | DNR     | DNR   |
| SSD ResNet-18<br>(960×544) | Object<br>Detection | TensorFlow  | 5 FPS       | DNR                           | DNR             | DNR              | (416×416)                     |                     |         |        |         |         |       |
| SSD ResNet-18              | Object              | TensorFlow  | 16 FPS      | DNR                           | DNR             | DNR              | OpenPose                      | Pose                | Caffe   | 14 FPS | DNR     | 5 FPS   | DNR   |
| (480×272)                  | Detection           |             |             |                               |                 |                  | [256×256]                     | Estimation          |         |        |         |         |       |
| SSD ResNet-18              | Object              | TensorFlow  | 18 FPS      | DNR                           | DNR             | DNR              | (200,200)                     |                     |         |        |         |         |       |
| (300×300)                  | Detection           |             |             |                               |                 |                  | VGG-19 (224x224)              | Classification      | MXNet   | 10 FPS | 0.5 EPS | 5 EDS   | DNR   |
| CCD Mabilanat 1/2          | Object              | TencerEleve | a EDC       | ONID                          | 1.0 EDC         | DNP              | 100 17 (224-224)              | otassincation       |         | 101110 | 0.0110  | 0110    | 2 mil |
| (960×544)                  | Detection           | Tensorriow  | OFFS        | DIVR                          | 1.0143          | DIVA             | Super Resolution<br>[481×321] | Image<br>Processing | PyTorch | 15 FPS | DNR     | 0.6 FPS | DNR   |
| SSD Mobilenet-V2           | Object              | TensorFlow  | 27 FPS      | DNR                           | 7 FPS           | DNR              | Unet                          | Segmentation        | Caffe   | 18 FPS | DNR     | 5 FPS   | DNR   |
| fan e e e                  |                     |             |             |                               |                 |                  | (1x512x512)                   |                     |         |        |         |         |       |





## Software Design: Convolutional Networks Considerations

- MobileNet\*
  - Separable convolution
  - Size and time to calculate is kept small
- ResNet
  - Great and accurate for larger projects
  - Slower than other CNNs
- TinyYOLO V3 (TinyYouOnlyLookOnce V3)
  - Uses an extractor, called Darknet
  - Works very quickly for smaller projects with the cost of accuracy
- Single Shot Detector
  - Similar to TinyYOLO but a bit more accurate
  - Can be matched with other CNNs to increase performance



### Software Design: MSP430 Responsibility



- Carries most features that doesn't entail any AI functionality
- Tank Movement
  - Tracks, turret, and barrel
- Phototransistors
  - ADC convertor receives laser input to determine high beams on phototransistors
- Certain triggers
  - When to send the bluetooth data to certain pins
  - When and how servos should operate
- Bluetooth Transceivers
  - Way to send data to the tank from the controller



## Overall Schematic



### ISP-EXP430FR6989 Main CPU + Connector Pinouts





### Circuit Design



#### Circuit:

- 4 Phototransistor per side
- Pull-Down resistors
- ADC per side
- Each Phototransistor set has own pin

#### **TEPT5700 Light Detection Circuits**





## Motor Power Circuit Considerations



- MG90D Servo Motor
  - Operational Voltage: 4.8V 6V, Recommended Operational Voltage: 4.8V
  - Considering 4 1.5V AA Batteries in series with Buck-Boost Converter for a consistent 4.8V at 2A max current
- Tank Tread 25 Geared Motor:
  - 7.2V recommended operation
- Greartisan 12V 50RPM Geared DC Motor
  - 12 Volt operation
  - Can be undervolted to slow down RPM
  - Reverse polarity Capable



## Voltage Conversion Circuits



• Designed using LTpowerCAD II V2.7.2





### Microcontroller Power



- Jetson Nano 2GB:
  - Requires 5V through USB-C, 3A Recommended current
  - Charmast Battery Pack at 5V, 3A, Dual USB-A to USB-C Ports
- MSP-EXPFR6989:
  - Requires 5V through Micro-USB at 1A max current

| Ratings          | Charmast Power Bank         | 4 AA Batteries     |  |  |
|------------------|-----------------------------|--------------------|--|--|
| Supplied Voltage | 5V                          | 6V                 |  |  |
|                  |                             | 4.8V               |  |  |
| Supplied Current | ЗA                          | Dependent on cable |  |  |
|                  |                             |                    |  |  |
| Interface        | USB - C                     | Any                |  |  |
|                  |                             |                    |  |  |
| Capacity         | 10000 mAH / 18W             | 8K-10K mAH         |  |  |
| Dimensions       | 3.56 in x 2.44 in x 0.87 in |                    |  |  |
| Weight           | 6.6 oz                      | 108 Grams          |  |  |



### Motor Circuit Design



#### Motor Drivers



- Resistors Protects Main Board From Damage
- Transistor can provide 15A on motor startup and 5A continuously on normal operation
- Diode prevents back current from damaging motor



## MLD203CLN Laser Diode Driver Circuitry



#### • Standard Configuration:

- Constant Power Solution
- Rs optional resistor to limit laser diode current
- Potentiometer to set Current
- Cin optional capacitor for reduction of power supply ripple



MLD203CLN Typical External Circuit



### HC-05 Bluetooth Module



#### HC-05 Manufacturers Circuit Diagram

#### HC-05 Pin to MSP PINOUT



#### for HC05 or compatible module

## Financials



| Items                   | Quantity | Cost     |
|-------------------------|----------|----------|
| Turret Motor            | 1        | \$14.99  |
| Barrel Motor            | 1        | \$9.95   |
| Motor Driver Controller | 2        | \$13.98  |
| Charmast Power Pack     | 1        | \$19.49  |
| ICR-18650K              | 2        | \$10     |
| Alkaline-Batteries      | 20*      | \$18     |
| Barrel Cameras          | 1        | \$80     |
| PCB                     | 1        | \$100    |
| Bluetooth transceiver   | 1        | \$7.51   |
| Jetson Nano 2GB         | 1        | \$60     |
| Total Cost              |          | \$333.92 |

| (*) These items |
|-----------------|
| were bought in  |
| sets            |

□ For one tank, the total will be \$762.76

| ltems                                         | Quantity | Cost     |  |  |
|-----------------------------------------------|----------|----------|--|--|
| Tank Treads                                   | 2*       | \$150    |  |  |
| Laser Diode                                   | 1        | \$25.21  |  |  |
| Constant Current<br>Driver for Laser<br>Diode | 1        | \$38.95  |  |  |
| Evaluation Board<br>for Laser Diode           | 1        | \$136.43 |  |  |
| Lens                                          | 1        | \$63.55  |  |  |
| Phototransistors                              | 30*      | \$14.70  |  |  |
| Total Cost                                    |          | \$428.84 |  |  |



# Questions?