
Spectral Telescope for Star
Classification

Addison Long, Aaron Moreno, Alejandro Olivo,
and Sebastian Rowe

College of Engineering and Computer Science,
College of Optics and Photonics,

University of Central Florida, Orlando, Florida,
32826, U.S.A.

Abstract — Stellar spectroscopy has remained an
important area of study since Newton first observed that the
sun's spectrum had missing colors. Today, the James Webb
Space Telescope uses spectroscopy to analyze the atmosphere
of extrasolar planets in the search for life. Spectroscopy
enables us to extract information by splitting white light into
its constituent wavelengths and mapping them in position
space. In our project, we aim to create our stellar
spectrometer and extract as much information as possible to
classify stars. Our primary goal is to determine star
temperature by analyzing the blackbody curve emitted from
stars.
Index Terms — Astrophysics, automation, imaging,

spectroscopy, stellar classification

I. INTRODUCTION

The creation of this spectral telescope used for star
classification has allowed us to capture the spectrum of
stars and classify them by the Morgan Keenan system.
Capturing star spectra and classifying them will allow us
to discover where on the main sequence the star being
observed sits. From this information, we will be able to
discover relative mass temperature and elemental makeup.
Along with this information on the star, we can also
determine whether or not the star is a binary star system.
To complete these feats, our group designed a
spectrometer, tracking system, guiding system, and
imaging system.
The spectrometer uses a modified Czerny turner design

optimized for scotopic conditions. The guiding system is
designed to resolve stars with short exposure times so that
we can ensure tracking accuracy. To ensure perfect focus,
both the guide camera and telescope are equipped with an
autofocus system. Lastly, our tracking system, after
calibration, creates a map of the night sky and gives us
go-to functionality so that we can easily find whatever
object we wish and take its spectrum. We designed our
own tracking system because it is important to track
accurately. The software for this system is written and
developed by our group and accessible through an

on-device display. To ensure our system can be used in all
environments, we used an advanced image processing
technique known as image stacking. This approach
increases our dynamic range and signal-to-noise ratio at
the cost of time. With this system, we have an all-in-one
system capable of providing amateur astronomers with
research tools that were previously unaffordable.

II. SPECTROMETER DESIGN

The spectrometer in our system is of the Czerny Turner
design, which uses catoptric optics to decrease signal loss.
The simulated system in Zemax has a 1 nm spectral
resolution following the Morgan Keenan stellar spectral
classification standard.

Fig. 1. Detector view in Zemax Non sequential mode showing
the simulated wavelengths 550 nm, 551 nm, and 560 nm. False
color intensity image showing separation between 1 nm and 10
nm.

The spectrometer in our system is of the Czerny Turner
design, which uses catoptric optics to decrease signal loss.
The simulated system in Zemax has a 1 nm spectral
resolution following the Morgan Keenan stellar spectral
classification standard. Since we designed a ground-based
system, we aimed to cover the entire optical spectrum not
absorbed by the atmosphere from 400-700 nm. We chose
to use 250 mm silver-coated mirrors with high reflectance
from 400 nm - 2 um, covering the entire optical range and
eliminating any chromatic aberration. Lastly, we used a
ruled diffraction grating with 600 lines/mm, giving
adequate separation of spectral lines and preserving as
much signal as possible since ruled grafting put most of
the signal into a single mode. To ensure that the camera's
sensitivity has minimal effect on the black body curve we
retrieve, we decided on a cooled deep sky camera with a
relatively flat spectral response across the optical range.
This camera also has the benefit of being a mirrorless
camera; in a DSLR, the mirror flipping out of the way to
expose the sensor causes a vibration that can smear an
image, reducing spectral resolution. Furthermore, the
camera has a full well 63.7Ke sensor, providing a high
dynamic range for any imaging task and more contrast
levels.
The last component of the spectrometer is the telescope

choice. Since we must prevent chromatic aberration from



affecting our spectrometer, we had to choose a reflecting
telescope. The best choice was a 6-inch SCT with a
1500mm focal length. This telescope gives us a focal ratio
of f/10, which, although slow, prevents star crowding and
makes it easier to pick out individual star's spectrums.

Fig. 2. Spectral response of the ZWO ASI294MC Pro from
400 nm - 700 nm from the manufacturer's website.

III. STELLAR CLASSIFICATION

The Morgan Keenan classification system
systematically labels any star given a spectrum with a 1
nm spectral resolution. Our initial plan was to implement
this system of classification so that we could look at any
star and place it in the main sequence; however, the
following constraints and limitations prevented us from
reaching the required resolution. First, the telescope and
mount we are using require lightweight materials. At
most, we can add an extra 3 pounds, and we need to fit the
spectrometer and guide scope within that weight. This
constraint limits us to using privately owned 3D printers.
Unfortunately, the printing accuracy we experienced was
less than desired, and our method for mounting mirrors
leaves no room for adjustments. The slight angles
introduced due to printing imperfections add aberration,
significantly limiting resolution. Since we must work with
low-signal sources such as stars, a catoptric system is
vitally important; however, mirrors are significantly more
sensitive to misalignments than refractive optics,
worsening the aberration encountered from the print
errors.
Lastly, the ocean temperatures and overall atmospheric

moisture this summer have prevented us from having
more than two clear nights of actual testing time, with one
of those nights happening before the spectrometer was
assembled. Given our inability to test in ideal
environments, we must pivot and classify stars by
temperature, which can be performed without
high-resolution spectroscopy. To determine star
temperature, we will use the fact that stars are blackbody

irradiators. By analyzing the blackbody radiation, we can
estimate star temperature by simply knowing the peak
wavelength of the blackbody curve. To reduce
computation, we will use Wein's law to determine star
temperature. The significant advantage of Wein's law is
that it relies on a single constant of proportionality, while
Wein's law falls apart for sources that peak in the
ultraviolet regime. The stars we will be analyzing peak in
the optical regime where Wein law holds.

Fig. 3. Black body radiation curve from Wein’s law for
various temperatures.

IV. RESULTS

We had to choose a light source to approximate a black
body irradiator to test our system in the absence of clear
nights. First, we considered using a candle, but
unfortunately, any room we could test in had airflow,
which caused the candle flame to move and flicker, which
would muddy the spectrum. Filament lights are also an
option, but they are too big. Our system is designed to
capture the spectrum from stars with an angular size of
only a few arc seconds. Given the focal length of our
telescope, we would be unable to place a light bulb
sufficiently far away for testing. Finally, we determined
that a White LED would sufficiently approximate a black
body source. LEDs are fundamentally not blackbody
sources; however, because the LED, even placed far away,
is much bigger than a star, the spectrum captured is low
enough resolution that the spectrum retrieved is similar to
what we would expect from a blackbody source.
In figure 3, you see the spectrum and a 1D profile,

which has been expanded and cast to grayscale. From
there, we can plot the entire spectrum from 400-700 nm,
knowing from the spectral responsivity of the camera that
the edges of our spectrum will be at 400 nm and 700 nm,
respectively. With a peak wavelength of around 560 nm,



we get a temperature of 5175k. Our system is working as
intended because daylight represents near-perfect white at
5700k, and the LED appears to be a near-perfect white to
the eye. Given that our testing environment was flooded
with excess room lighting of a cooler yellow-orange, the
system should read a little lower than the true value color
temperature of the LED.

Fig. 4. Test spectrum of the LED placed at a distance from our
system. Peak is at around 560 nm.

V. USER INTERFACE

The user interface being used for this project is a task
that was developed completely from scratch. While
pulling references and inspiration from different
astrophotography software, we decided it best to create
our very own user interface. In this way, we will have a
program that is completely within our control and
understanding while also being able to challenge
ourselves. Developing our own user interface will create
more independence for us because it will solidify the
individuality and uniqueness of this project.
The best approach to creating our user interface was to

implement the design and functions using the
programming language known as Python. Python is a
great, easy-to-use, modern programming language with
limitless functions and applications. Many programmers
find Python to be one of the easiest languages to learn and
work with because of its higher-level script language.
More specifically, we are using the Python libraries
known as Tkinter and CustomTkinter to form our user
interface.
Python was selected as our language of choice because

of its previously mentioned ease of use as well as its
limitless applications. Python is a high-level language best
used for data analysis, data visualization, task automation,
as well as web development. Each of these features deem
Python more than suitable for the tasks of our project.

A. CustomTkinter

The purpose of implementing CustomTkinter is because
we want our user interface to appear as modern and
pleasing to the eye as possible. CustomTkinter is a user
interface based extension of Python that allows not only
for the creation of elements in a window, but the ability to
customize said elements. Using CustomTkinter will allow
this project to be presented in a way that is more appealing
to us and others.

B. Properties of the User Interface

The development of the user interface began with the
display. The parameters for the window consisted of a
840x720 display to support a smaller design on any
monitor. We then wanted to create multiple pages so we
can implement inputs as well as a live view of the
telescope. To do this, a button was created to separate the
main window and the live view window.
The main window contains very simple features that

allow the user to input parameters for the telescope.
Features such as temperature control, exposure time, and
more will let the user set up the system to his or her liking.
Once all of the necessary information is set, the user
simply needs to press the “Submit” button at the bottom of
the page so that the software can recognize the
information provided. Using code from an outside source,
we are able to not only implement our own inputs, but also
analyze and capture stellar images through PHD2.
In the second window is where all of the live viewing

will be done. Our user interface is set up in a way that we
can view everything the telescope sees. Furthermore, the
second window will allow users to control the position of
the telescope and even capture an image of the telescope’s
view.
The features implemented in the user interface are

designed to appear very straightforward and easy to use.
We also made sure to provide features absolutely
necessary for the success of our spectrometer. With the
help of Python and its extension CustomTkinter, we were
able to create a well functioning user interface suitable for
all.

VI. IMAGE PROCESSING

Image processing is used in this project to capture and
understand the images we are receiving from the
telescope. This can be done using certain
astrophotography software. These programs use image
stacking software to pre-process and calibrate data from
images. A few known image processing software include
Adobe Photoshop, PixInsight, Siril, DeepSkyStacker, and
Registax. Although each software uses similar
pre-processing and post-processing steps as well as meets



the same end goal, they each have their own qualities that
help astrophotographers decide on the one that suits them.
The most important factor considered when deciding

which software we would like our software to resemble is
the type of astrophotography being done as well as its ease
of use. The softwares we analyzed included Night Sky
Photography, Piggyback Astrophotography, Prime Focus
Astrophotography, Spectroscopy, and Deep Sky
Astrophotography. When comparing the previously listed
astrophotography software, the central focuses were on
tools, complexity, and appearance.
Of the software options mentioned, Siril is free and easy

to learn. Siril has many beneficial features such as noise
reduction, image alignment, stacking, photometric color
calibration, and can run the third-party tool StarNet.
StarNet is a program that allows users to remove stars
from astrophotography images. The only issue with Siril is
the amount of storage a file may swallow because of its
stacking capabilities.
Recently, artificial intelligence has also been used for

more complex image processing. Because of the increase
in volume of astronomical data, tools are being used and
developed to withhold and create better images from the
data. Artificial intelligence is primarily being used to
combine images from different sources and detecting and
classifying astral objects.
Analyzing and identifying astral objects that may not be

easily viewable is a very costly task. Being able to identify
these objects requires higher complexity and is very time
consuming. With AI technology, the cost of identifying
these astral objects decreases significantly because
astronomers can utilize computer vision techniques to
classify the objects.
To achieve image processing, we focused on

astrophotography software with functions that resembled
that of Siril because Siril’s user interface aligns with how
we designed our user interface to work. Pre-processing is
done in a much easier way because of the scripts written
within the software. The tools Siril provides will also be
extremely useful to us and what we would like to
accomplish with our project. By primarily using the C and
C++ programming languages, Siril captures and processes
data from a telescope, and stacks the data to create images
of the celestial bodies seen in outer space. Siril is
“specially tailored for noise reduction and improving the
signal noise ratio of an image from multiple captures.”
Using Siril, we will be able to capture celestial bodies and
enhance them to obtain high definition images.
The way Siril works is it takes in astrophotography data

for pre-processing. During the pre-processing phase, the
data is going under flat field correction as well as the
correction of other basic imaging problems. The next step
is stacking. Stacking is a technique used to increase the
quality of an image by compiling multiple, roughly

10,000, layers of an image into a singular image. The
process takes these images, aligns them over one another
to reduce noise and increase the signal-to-noise ratio.
Once stacking is complete, then begins the processing.
During processing, the astrophotographer does whatever is
needed to further enhance the image to their liking.
Actions include but are not limited to color correction,
noise reduction, and image sharpening.
From this information, we hope to gather significant

data from the spectra and celestial objects we encounter
using the telescope. This data includes star classification,
temperature of the object, as well as the object’s mass.
Siril is being used as the blueprint for our group’s user

interface because of its many advantageous and effective
features. For example, Siril’s calibration allows for quality
image enhancement. Siril can utilize files for BIASES,
DARKS, and FLATS. Siril is also great with analysis in
that it can recognize and process the scientific values
found within astronomical images. Siril is equipped to
provide the necessary information we require from objects
in space such as star brightness. It can also provide
astrometry interactions between various astral objects
within the image.
The program contains several pre-processing and

processing algorithms designed specifically for
astronomical imaging. Siril is great at processing deep-sky
lucky imaging data because it supports a video file format
known as “Sequence Extracted from a RAW” (SER)
videos. All these features allow for multiple image
processing from astral objects seen through the telescope.
This is all done with a good storage capacity as well as an
admirable processing speed.
The user interface designed for this project will contain

inspiration from software programs such as Stellarium and
Siril. These two programs are at the forefront of the design
of the user interface because they are both great for
locating stellar objects while collecting images and data
from said objects.
The user interface that will be used in this project will

contain few but necessary features. These features will
include, but are not limited to, the ability to have input
settings, mount control, live telescope view, image
capture, and more. The study of multiple
astrophotography software programs and the necessities of
our project has allowed us to determine the tools we find
most useful.

VII. GUIDING

Astronomy is highly noise sensitive and there are
multiple techniques used to limit noise and increase
maximum exposure time. Tracking is a primarily
hardware based approach that focuses on moving the
mount in a smooth and linear fashion. Guiding however is



a computer vision problem that is focused on interpreting
image data to detect stars, correct tracking error, and
translate data to the mounts controller via the INDI
communication interface.
Guiding is used as the means of correcting mechanical

error in the tracking processes. Tracking serves as a way
of locking onto stars and enables us to have longer
exposures. Tracking of our system works by manipulating
the right ascension of the mount at 15.04 arcseconds per
second. Tracking however will always be prone to errors
caused by the mechanical components of a mount.
Tracking error can be a result of things such as cable
snagging, gear wear and tear and alignment errors can all
lead to tracking errors. Guiding works by leveraging a
guide scope which is a camera capable of live processing
image data to correct tracking error. Within our system
guiding will leverage the Raspberry Pi Compute 4,
Raspberry Pi High Quality Camera, and PHD2.
PHD2 is an open-source project which can be leveraged

via a python based client to allow for integration via a
python GUI. PHD2’s primary guiding feature set allows
us to leverage star detection algorithms along with
machine learning based predictive guiding algorithms.
This allows for proactive error correction rather than
reactive by leveraging known error values. The main
parameters the user must set are the minimum movement
parameters which are used as a means of avoiding small
movement corrections which would not have effect on star
shape. The next parameter is the hysteresis parameter
which defines how long into the past values should be
considered. The last user set parameter is the aggression
which is a percent based value and determines how much
of the actual expected correction the mount should
actually do.
PHD2 guiding parameters are user set and can be

corrected and modified via their live view as well as a
correction graph which would show two different states.
Overcorrection is the first state which is where jagged
lines crossing over the Y-Axis occur. This is an indicator
that the min move parameter is too great. Undercorrection
on the other hand is described as a near vertical line
displaying that mount commands issues are not being
taken seriously enough this is counteracted by increasing
the min movement command. These parameters are how
we can decrease our guiding error and increase our signal
to noise ratio.

VII. ASTRONOMY PERIPHERAL CONTROL

Peripheral control plays a major role in automation of
the spectrum acquisition. Astronomy equipment however
such as the Celestron Nexstar 6SE, the ZWO camera and
even the Raspberry Pi High Quality camera can only be
interfaced with programs and controlled via code through

use of INDI drivers. INDI is an open source driver level
software used to automate and control astronomical
equipment.

Fig. 5. The different layers of communication between the
User Level Elements down to the Hardware.

Integrating the INDI library on the ARM architecture
requires downloading the source library onto the
Raspberry Pi Compute Module 4 and building it from
source. It then requires virtualizing an environment in
order to allow for the server to launch as Raspberry Pi OS
disables allocation of environment variables outside of a
virtualized environment. Finding the corresponding INDI
drivers involves downloading them from their open source
third party library and then building the required library
files in order to activate them inside of the server. Next,
comes the software level which handles calling the
respective driver functions in order to control the
astronomy peripherals.
PHD2 handles delivering instructions through the INDI

architecture to the Celestron mount and to the Raspberry
Pi HQ Camera. Python is needed however to properly
interface with the ZWO camera. This software leverages
the existing INDI drivers to enable us to create an intuitive
user interface for controlling the camera. The primary
functionality from the drivers that we will call via python
is enabling the live view functionality, setting exposures,
and controlling color balances and gain. The nature of the
application also requires automated control of the camera
which requires automated imaging.

IX. SPECTRUM ANALYSIS SOFTWARE

Spectrum analysis is performed on the Raspberry Pi
Compute Module 4 and is a python based program. The
GUI elements are established using tkinter which is a
python based GUI maker. First, a canvas is established to
hold the spectrum image which can be selected via the file
option. Next, by pressing “p” placement mode is entered



which allows to determine the center of the spectrum. The
center of the spectrum must be accurately determined in
order to help with the bounding processes. Pressing “r”
enables entering rotation mode which allows us to line up
the reticle with the spectrum; this is necessary as the
spectrum's orientation relative to the X-axis will not be the
same. This is how the GUI elements work and define key
parameters needed for analyzing the spectrum. The image
will generally require scaling to fit displays as the native
resolution of the image is 4144 x 2822. The scaling factor
plays a major role in calculating the center point, rotation,
and the overall mapping of the image. The scaling is done
by taking the (size of the screen) / (original image size)
this gives a scalar value which we can scale the image by.

Fig. 6. The GUI for determining key parameters needed for
spectrum bounding and processing.

Once the key features such as the center point and
rotation have been defined the spectrum can be bounded.
Bounding the spectrum is the most complicated of the
processes as due to the smooth gradient of the spectrum
there are very few methods that could work for defining
consistent bounds. Assumptions must be made in order to
accomplish spectrum analysis on stars. 1.) stars all provide
the same size spectrum due to being the same size relative
to their distance from the telescope. 2. )The distance on
either side of the spectrum is the same from the center. 3.)
The middle point of the spectrum will always be visible
regardless of the star type. With these assumptions made,
bounding becomes a more simple problem.
With the assumptions made spectrum bounding can

happen first we take a 1-D profile simplifying image down
to a single array with the size being the amount of pixels
in the 1-D line. In the case that the line covers an area
smaller than the full width of the image the rest of the
pixels are filled with black pixels. This one 1-D array
stores the intensity values and we will be using this array
to determine the amount of indexes left and right of the
center which we must look at to determine 400 and 750
nm.

Fig. 7. This image displays what the 1D profile looks like for
the star rasalhague.

The 1-D profile’s values from the start and end index
get extracted which allows us to graph wavelength vs
intensity. This graph will allow us to display our intensity
at each given pixel; these values don’t mean anything
intrinsically but in a single star system their values follow
a gaussian-like distribution. The simplified array that
holds only the values between the start and end index is
then divided into 250 equal sections signifying each
different wavelength in their respective nm. Once the
values have been grouped and averaged the peak location
can be found by finding the first derivative of the best fit
line and finding when the line's slope crosses 0. This
wavelength value is then passed into Wein's law to
determine the light source's temperature.

Fig. 8. The following is the results of the graphed spectrum
once the pixels have been grouped and the plotted vs. their
intensity values.

X. HARDWARE

In order to exercise control of our mount and in order to
take in the camera data as input and analyze it, we will
need a hardware platform upon which to execute these
tasks. We have built a printed circuit board that has been
designed around having the Raspberry Pi Compute
Module 4 as its main processing unit. We simply needed
to provide the necessary power and Input/Output to this
unit in order to access all of its on-board utility needed to
follow through on our projects engineering requirements.
The Raspberry Pi Compute Module 4 is powered by a

quad-core ARM Cortex-A72 processor running at 1.5
GHz, It supports dual HDMI output with 4K resolution,



USB 3.0, and Gigabit Ethernet, ensuring high-speed
connectivity. Additionally, the Raspberry Pi Compute
Module 4 includes PCIe support, allowing for further
expansion with peripherals. Its compact form factor and
extensive GPIO make it ideal for our application. It
provides an all-in-one package from which we can run
Linux OS and develop software at a high level, which will
be required in order to leverage existing spectrometry
libraries and programs.
For our project we needed one HDMI output for our

monitor so that we can show our GUI, four USB ports for
keyboard, mouse, and other peripherals, two FPC
connectors, one for the connection to our tracking camera
and another for use as a data bus to a potential, but yet
unrealized motor driver board for the building of a custom
mount, and finally the custom I/O mount for the
Raspberry Pi Compute Module 4.
For power, we elected to use three entirely separate

barrel jacks for our input. One for the USB and other
peripherals, one for the potential, but yet unrealized motor
control board for a custom mount, and one for the
Raspberry Pi Compute Module 4 itself. This was done for
the sake of simplicity as the Raspberry Pi is very sensitive
when it comes to power, so the more isolated we can make
its power, the better, as well as for the reason that the
unrealized motor control board would be drawing a
significant amount of power compared to the rest of the
board in order to drive the motors to move the mount.
Future iterations of this board could potentially reduce this
down to one, higher powered, power input with some
more robust power control, but as of right now we have
gotten the same functionality with these three separate
inputs.

Fig. 9. Version 1 of our printed circuit board without the
Raspberry Pi Compute Module 4 attached and peripheral female
USB cords soldered into our erroneously placed male USB ports.

The second iteration of our printed circuit board made
three main improvements. First, we corrected the
placement of male USB ports with the placement of
female USB ports. No wiring changes were needed as the
USB port wiring was verified to be correct with the use of
soldered on temporary female USB cords onto version 1
of our PCB. The second “quality-of-life” improvement
was the addition of two power switches, one for the
Raspberry Pi Compute Module 4 and one for the USB
ports and the rest of the board. As well as some power
indication LEDs for these switches. The third and most
critical change for version 2 of the PCB was the correcting
of polarity on three data lines on the FPC connector for
the tracking camera. This enables us to actually utilize this
second FPC connector port.

Fig. 10. 3D model of the second iteration of the printed circuit
board.

XI. TEST STAR

To test the full-stack functionality of our product on
actual stars, the weather must be optimal so that our
guiding, tracking, and capture is unobstructed. The night
sky must be “astro dark”. The darkness of the night sky is
measured in Bortle units, where Bortle 1 is perfect and
optimal darkness and Bortle 9 is city lights at night. With
some travel, we have deemed anything under Bortle 4 as
an acceptable degree of “astro dark”. The night sky must
also be clear of all types of precipitation as there is a
significant amount of risk of damage as our equipment
(especially the printed circuit board) does not have strong
water resistance. The night sky must also be very clear of
clouds as whenever a cloud crosses between our capture
equipment and the star we are attempting to capture, we
must cease our exposure because the imaging is greatly
weakened and the tracking becomes impossible.



Fig. 11. Display of a weeklong weather forecast from
clearoutside.com. Each row is one 24 hour day, with the red
hours representing cloud coverage over 50% and green hours (if
present) representing under 10% cloud coverage. The
yellow-to-black gradient represents the brightness of the day,
with the black being “astro dark”.

As weather has been exceedingly poor and difficult to
manage, we needed a controlled test environment to
ensure that our product is functional. For this we decided
to build what we are calling a “Test Star”. Our test star
essentially consists of two groups of LED’s one group is
the control and is simply a singular white LED. From this,
we were able to grab a clear rainbow spectrum of all
visible wavelengths. The second group is a bundle of one
red LED, one green LED, and one blue LED. When all of
these are illuminated and viewed from a distance the Test
Star appears white to the human eye, but to the
spectrometer we can observe the three separate
wavelengths coming through as well as the locational
offset of each LED (which is similar to how Binary Stars
behave).

Fig. 12. The continuous rainbow spectrum of all visible
wavelengths of light received from the one white LED.

Fig. 13. The discontinuous and offset spectrums of the red,
green, and blue LEDs.

Our test star utilizes a 9V battery and a 9V to 5VDC
converter before sending the 5V rail to four switches,
these four switches then go to four 100K potentiometers
which are then sent out to the red, green, blue, and white
LEDs. As the red LED shows a visible lower brightness
compared to the other three LEDs when attached to the

same voltage, the potentiometers were added so that a
degree of dimming could be achieved so that the clustered
red, green, and blue LEDs could all be of similar
brightnesses and thus appear to be a more accurate white.

Fig. 14. The Test Star pictured here is wired into a solderless
breadboard. Future Iterations will be on a soldered down
prototype board.

It is important to note that the Test Star is a response to
the difficulties that the weather posed when it came time
for testing, for this reason the Test Star is not considered a
part of the final product, but is a critical part of testing the
final product. As it is not a part of the final product and is
simply to test and reliably demonstrate, we are using
prototype methods of actualizing circuitry rather than
ordering and printing a circuit board.

XII. CONCLUSION

In conclusion, STSC-MS is an endeavor comprising
four interconnected systems geared towards capturing and
analyzing stellar spectra using the Morgan Keenan
classification system. This approach will facilitate the
determination of a star's position on the main sequence,
offering insights into its relative mass, temperature, and
elemental composition, while also enabling the
identification of binary star systems. To achieve these
objectives, while prioritizing simplicity and accessibility,
we developed a suite of subsystems using specialized
instruments such as: a spectrometer, tracking system,
guiding system, and imaging system. Modular
construction and 3D-printable parts engineered with broad
tolerances ensure ease of assembly and customization,
enabling amateur astronomers to tailor the system to our
individual needs without necessitating high-quality 3D
printing capabilities. Using these methods have allowed us
to complete a functioning spectral telescope.

ACKNOWLEDGEMENT

To the professors, mentors, friends, and family who
have motivated and guided us to the end of our
undergraduate journey. We thank you all for being a part
of our experience at the University of Central Florida.


