
SAFEPADS: Smart Animal Fencing and Emergency Predator Alert and Detection System

Senior Design II

Group 9

Meet the Team

Overall Project Motivation

Why Smart Collars?

Many pet owners deeply care about the safety and happiness of their pets but cannot continuously monitor them due to other obligations. Smart collars offer a practical technological solution to promote pet safety and provide pet owners with peace of mind while away from home.

Common Smart Collar Features:

- GPS
- Geofencing
- Training Assistance
- Activity Tracking
- Health Monitoring

SAFEPADS combines many desirable competitor features into one product

Gaps in Current Market

- Lack of mechanism to defend unsupervised pets from predators
 - Current solution is mechanical device with spiked protrusions (no smart features)
 - SAFEPADS will include a feature that defends pets in instances where they may be in danger
- Lack of integrated indoor invisible fence system
 - Available as a standalone product (no smart features)
 - SAFEPADS will include an indoor location/fencing system to protect pets from hazards within the home and locate pets in areas where using stationary security cameras is not feasible, cost-effective, or desired

Basic Goals

Advanced Goals

Stretch Goals

Location tracking Geofencing via vibration feedback

Manual vibration feedback activation for training

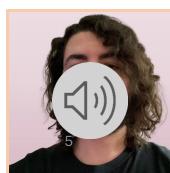
Activation of defense mechanism on detection of potential predator in pet's environment

Owner SOS notifications

Indoor location/fencing system detects when collar has passed point of installation

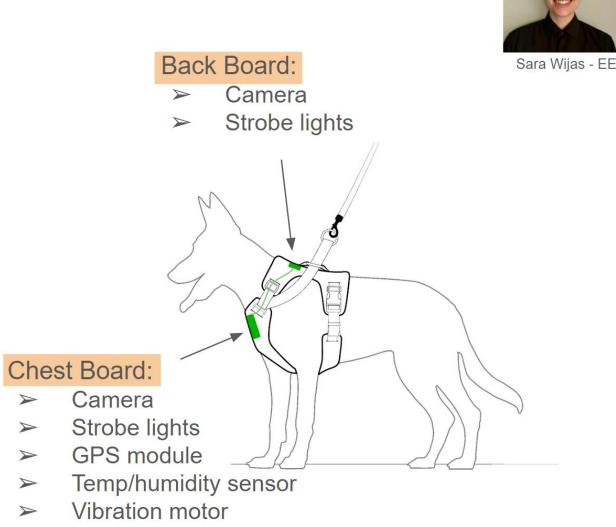
Wireless data transmission to app Further training of image processing model to reduce false positives Indoor location/fencing system differentiates between pets Multi-platform app Use indoor location/fencing system to track pet speed and indoor activity

Software distinguishes between low-danger and high-danger predator encounters

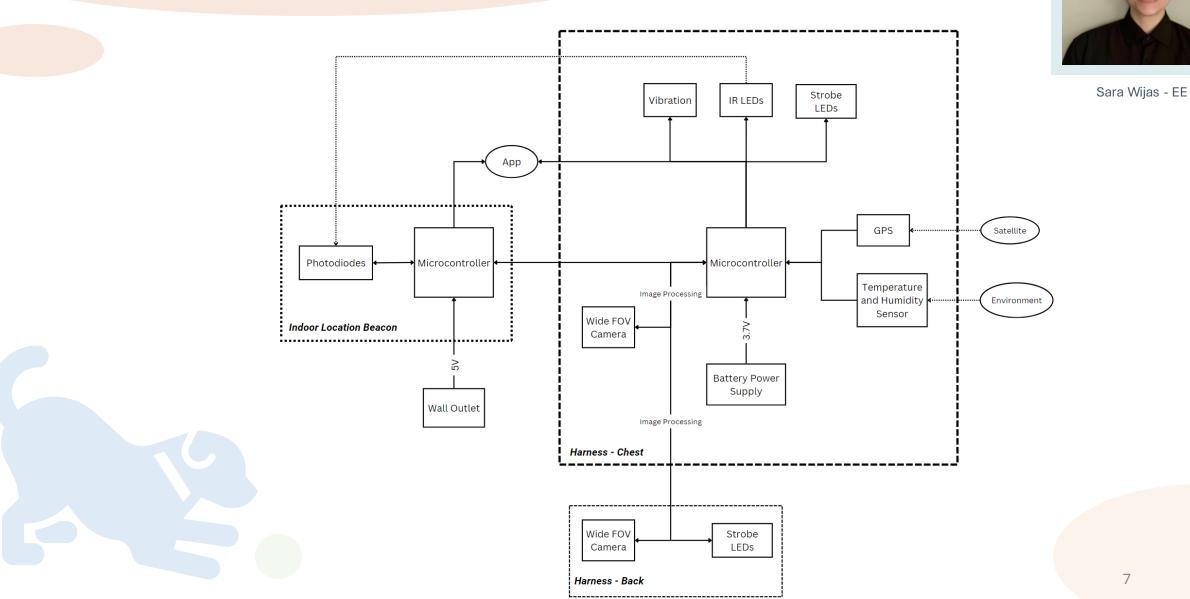

Rana Scherer- PsE

Objectives

- A wide field-of-view camera with image processing software
- Using the camera to detect predators and activate a defense mechanism
- Live GPS location and Geofencing features
- Indoor location system
- A main GUI application for the user



Brief Overview


Features:

- Predator detection
- Defensive strobe lights
- GPS
- Geofence
- Temperature and humidity sensing
- Vibrational corrections
- Indoor location beacon system
- App for user control

IR leds for beacon

Hardware Block Diagram

7

Specifications and Requirements

Component	Parameter	Specification
Temperature Sensor	Temperature detection in °C	2 °C.
Wireless Transmission	Upload speed for general information	< 10 minutes
Power Supply	Length of rechargeable battery life	> 1 hour
GPS	Geofencing/location tracking update time	Update location at least every 30 seconds
DC Motor	Vibration	~150 Hz
Wide Field of View Camera	Angle	≥ 180° field of view
Indoor Fencing Receiver Lens System	Angle	≥ 90° field of view
Indoor Fencing Receiver Lens System (cont.)	Accuracy	≥ 90%
White LED	Strobe light duration	1 minute

Sara Wijas - EE

Hardware Comparison and Selection

Microcontroller Selection

- Goal: Allow the collar to operate with and interact with I/O devices.
- Priorities:
 - Compact physical size
 - Integrated WiFi module
 - $\,\circ\,$ Ease of programming
 - $\,\circ\,$ High processing power
 - $\,\circ\,$ Low cost

Component	Size	WiFi Module?	Num. of Bits	Bit Rate	Num. of Power Mode Options	Price
MSP430	7mm x 7mm	No	16	12Mbps	4	\$10
MSP432	9mm x 9mm	No	32	16Mbps	5	N/A
Arduino Nano (ATmega328P)	7mm x 7mm x 1.2mm	No	8	2Mbps	4	\$12
ESP32	5mm x 5mm x 0.850mm	Yes	32	150Mbps (WiFi), 4Mbps (Bluetooth)	5	\$10
ESP8684	4mm x 4mm x 0.850mm	Yes	32	72.2Mbps (WiFi), 2Mbps (Bluetooth)	4	\$8
Raspberry Pi	7.75mm x 7.75mm	Yes	32	62.5Mbps	0	\$50
Particle Photon	14.60mm x 16.60mm	Yes	32	N/A	0	\$19

10

Temperature and Humidity Sensor Selection

- Goal: Provide pet owners with a warning when their pet is in an environment outside a recommended temperature range for an extended period of time.
- Priorities:
 - Temperature accuracy within ±2°C
 - $\circ~$ Relative humidity accuracy within $\pm 10\%$
 - Low current consumption
 - \circ Small size
 - o Low cost

	Component	Accuracy	Current Consumption	Size	Price	
	DHT-11	±2°C and ±5% relative humidity	0.3mA	15.5mm x 12mm x 5.5mm	\$5	
F	DHT-22	$\pm 0.5^{\circ}$ C and $\pm 2\%$ relative humidity	1.5mA	14mm x 18mm x 5.5mm	\$10	
	TMP36	±2°C	50µA	3.5mm x 4.6mm x 19mm	\$3	
	LMT84	±0.9°C	5.4µA	4.3mm x 3.5mm x 4.3mm	\$2	
/	SHT31	±0.2°C and ±2% relative humidity	1.5mA	2.5mm x 2.5mm x 0.9mm	\$6	
	HIH-4030	±3.5% relative hu midity	200µA	4.17mm x 8.59mm x 2.67mm	\$21	ustin Fugate - EE
	HDC2010	±0.2°C and ±2% relative hum idity	550nA	1.5mm x 1.5mm x 0.675mm	\$4	

Global Positioning System Selection

- Goal: Allow pet owners to monitor where their pet has been throughout the day and to provide geofencing capabilities.
- Priorities:
 - $\circ~$ Accuracy within $\pm 5m$
 - o Low current consumption
 - \circ Small size
 - \circ Low cost
 - o Easy to test and program

Component	Accuracy	Current Consumption	Size	Price
PA1616D	±3m	29mA	16mm x 16mm x 6.7mm	\$20
PA1616S	±3m	20mA	16mm x 16mm x 4.7mm	\$25
NEO-M9N-00B	±2m	36mA	15.9mm x 12.2mm x 2.4mm	\$27
L96-M33	±2.5m	19mA	14mm x 9.6mm x 2mm	\$13

Austin Fugate - EE

Battery Selection

• Goal: Provide an appropriate amount of power to all components on the pet collar.

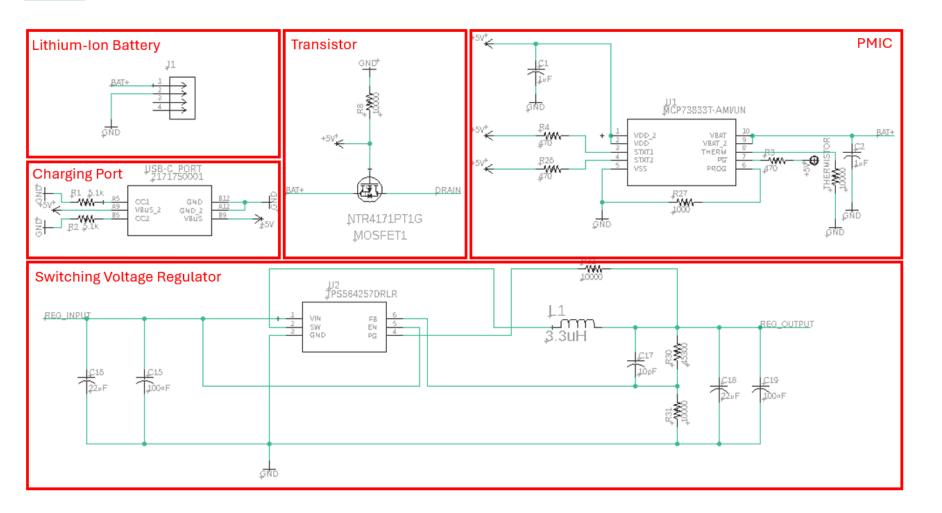
• Priorities:

- o High energy density
- \circ Low cost
- Ability to supply 3.3V to system
- \circ Small size
- $\circ~$ Ability to be recharged

Component	Typical Output Voltage	Energy Density	Price (400 mAh)
Lithium-Ion	3.7V	250 Wh/kg	\$7
Nickel Metal Hydride	1.2V	90 Wh/kg	\$2
Nickel Cadmium	1.2V	60 Wh/kg	\$1.5

Austin Fugate - EE

Vibration Motor Selection


- Goal: Allow pet owners to indicate to their pet when they are exhibiting an undesirable behavior without the use of shocks.
- Priorities:
 - $\circ \; \text{Safe}$
 - $\,\circ\,$ Variable intensity
 - \circ Small size
 - \odot Operating voltage \leq 3.3V

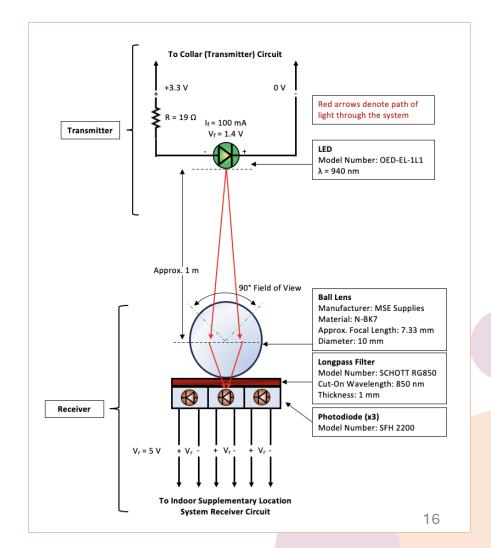
Component	Operating Voltage	Dimensions (diameter x height)	Adjustable Intensity?	Price
Vybronics Z-Axis LRA Coin VM (VG1040003D)	0.14 V - 3.54V	10mm x 4mm	Yes	\$3.71
Adafruit 1201 Vibration ERM Motor	2V - 5V	10mm x 2.7mm	Yes	\$1.95
SparkFun Solenoid	2V - 5V	4mm x 20mm	Yes	\$5.50
Kingstate KPEG130 Piezoelectric Transducer	4V - 28V	30.2mm x 7.5mm	Yes	\$2.27

Sara Wijas - EE

Power Supply Subsystem

- PMIC: Charges battery at a maximum rate of 1A.
- Switching Voltage Regulator: Outputs 3.3 V at 93.8% energy efficiency.
- Transistor: Included to disable rest of device while charging.

Austin Fugate - EE



Rana Scherer- PSE

Indoor Location/Fencing System

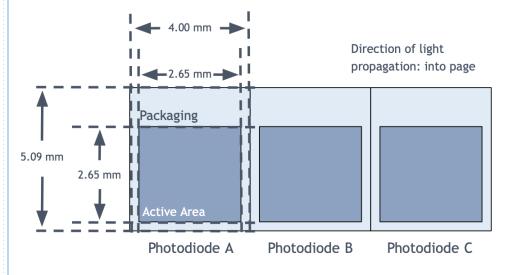
• Overall Design:

- Transmitter-receiver pair detects when collar has passed the point-of-installation
 - Once pet entered room
 - Twice pet exited room
- Receiver receives power separately and contains separate microcontroller transmits data over Wi-Fi to software
 - Software activates collar vibration feedback
- Specifications: ≥ 90° field of view, 90% accuracy at 1 meter working distance

Transmitter Light Source Selection

V	Vavel	ength		S	Source T	уре 🎽	
		System must not be susceptible to	Typical household lighting emits mostly in the 400-750 nm range			Light-Emitting Diode (LED)	Laser Diode
		environmental noise			dvantages	•Eye-safe in required wavelength range	•Coherent, highly directional source
							 Can propagate for
		Must be compatible with cost-effective optical components	NBK-7 glasses accept ~350 nm < λ < ~2000 nm			•Inexpensive	long distances without significant change in beam size/beam divergence angle
			Dog vision is confined to				
		Must not upset animal's	the visible region				•Narrower spectral bandwidth
		circadian rhythm	Cats may be sensitive to light with wavelengths as long as 900 nm	D	Disadvantages	•Incoherent source	•Restricted to use of eye- safe wavelengths within
						•Commonly includes unspecified focusing	acceptable exposure limits
	\checkmark	Therefore, 900nm < λ < 2000	nm			optics in packaging	•Expensive

Source Type

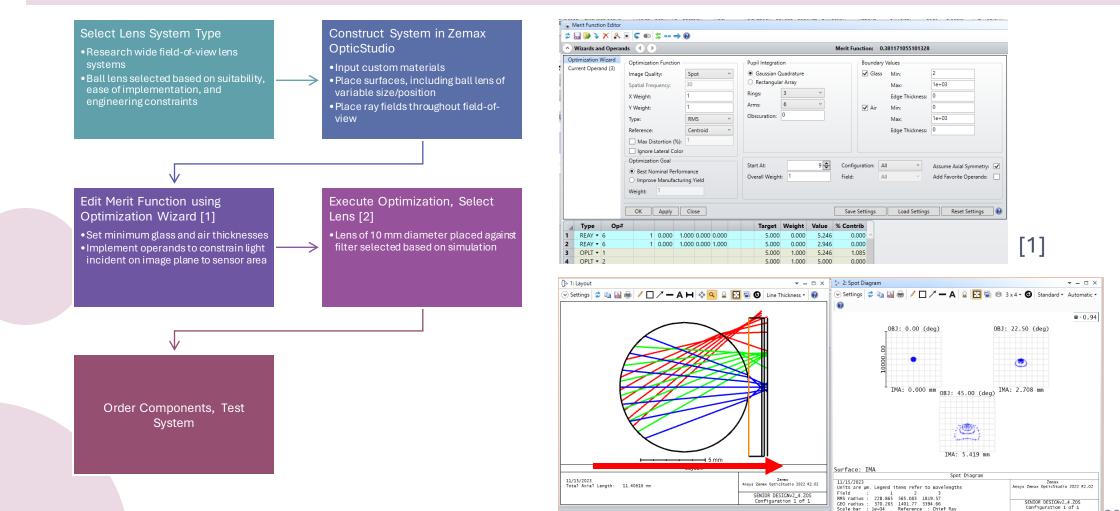


Photodetector Selection

Rana Scherer- PsE

			1							
	Photoresistor	Photodiode (Reverse- <u>Biased)</u>		Component	Responsivity at 940 nm	Rise Time (Vr = 5 V)	Fall Time (Vr = 5 V)	Dark Current	Active Area	Price
Advantages	•High level of photoconductive gain	•Linear response to incident irradiance						(Vr = 10 V)		
		•Fast response time — performs well with high-		VEMD2704	0.78 A/W	70 ns	70 ns	0.03 nA	1.51 mm ²	\$0.83
		frequency modulation •Inexpensive with sensitivity at 940 nm		SFH 203 PFA *measurement taken with Vr = 20 V	0.62 A/W	5 ns*	5 ns*	1 nA*	1 mm ²	\$1.00
Disadvantages	•Limited ability to	•Lesser responsivity than		BPW 34 S	0.67 A/W	20 ns	20 ns	2 nA	7.02 mm ²	\$1.13
	respond to high- frequency modulation	photoresistor		SFH 2200	0.70 A/W	40 ns	40 ns	1 nA	7.02 mm ²	\$1.39
	•Logarithmic response to incident irradiance				1	I		I	1	
	•Not widely available with sensitivity at $\lambda > 900$ nm									

Rana Scherer- PsE



- Given angular field-of-view (AFOV), the maximum focal length (f) of the lens system used relates to the selected sensor's side length (H) by the equation **AFOV = 2*arctan(H2f)**
- Photodiode active area side length: 2.65 mm
- Lens system's maximum focal length using one photodiode: ~1.33 mm
 - Unachievable due to photodiode packaging and filter thickness
- Solution: use a panel of three photodiodes along each axis
- Practical active area dimensions: 10.65 mm * 2.65 mm
- Maximum acceptable focal length: ~5.325 mm
- Impact of blind spots due to photodiode packaging on performance should be minimal
 - It is impossible for the animal wearing the collar to pass the blind spots without passing the rest of the receiver

Receiver Lens System Selection and Design

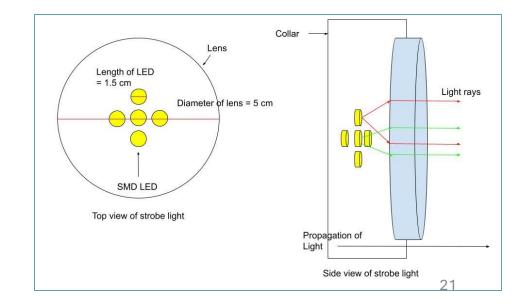
Rana Scherer- PsE

[2]

Graph

Text

Predator Identification and Defense systems


• Overall Design:

- This system contains a strobe light and camera system
- The identification part of the system will contain two cameras located on the front and back of the collar
 - This system will contain two cameras with custom lens designs that allow up to 150 degrees field of view.

The defense part of the system will contain a strobe light

- This system contains two sets of five LEDs with a collimating lens that can be manually activated through the corresponding application.
- Supplementary function is easy pet location

Predator Identification: CMOS Sensor Selection

Component Mega 5MP SPI Camera Module	Required Voltage3.3V	Resolution 5 MP	Shutter TypeRolling	Pixels 2592 x 1944	Dimensions 33mm x 33mm x 17mm	Price \$34.99	Types of CMOS sensors	Advantages	Disadvantages
Arducam for Raspberry Pi Camera	Variable	8 MP	Rolling	4608 x 2592	25mm x 24mm	\$22.99	Basic CMOS Sensor	Good image quality Uses less current and voltage	Image quality not as good as other CMOS sensors
Arducam 64MP Camera Module for	Variable	64 MP	Rolling	9152 x 6944	25mm x 24mm	\$59.99	Backside Illuminated CMOS sensor	Better for image noise Sharper and clearer image	Not as good for wide FOV
Raspberry Pi							Stacked CMOS Sensor	Better space efficiency in	Produced for high end photography
OV5640 Camera Board	3.3V	5 MP	Rolling	2592 x 1944	35.70mm x 23.90mm	\$25.99		sensor based on design Improved image quality	resulting in much higher producing

Predator Identification: Lens Design

Lens design	Advantages	Disadvantages
Fisheye Lens Design	Very Wide FOV Good Resolution	Fisheye distortion of image
Zoom Lens Design	Wide Variety of focal length	Complicated and timely lens design
Wide Angle Lens	Wide FOV Minimal distortion	FOV somewhat limited compared to other lens designs

Predator Defense: Strobe light LED selection

Component	Wattage (W)	Voltage (V)	Brightness (Lumens)	Dimensions	Beam Angle (Degrees)
Through Hole LEDs	0.192	3.2	11	37.36 mm	360°
SMD LEDs	1	3.6	110	15 mm	120°
Bicolor LEDs	0.066	3.3	40 - 65	2.5mm x 1mm x 0.7mm	130°
High Power LEDs	1	3.6	100	20mm x 8mm x 6.6mm	140°

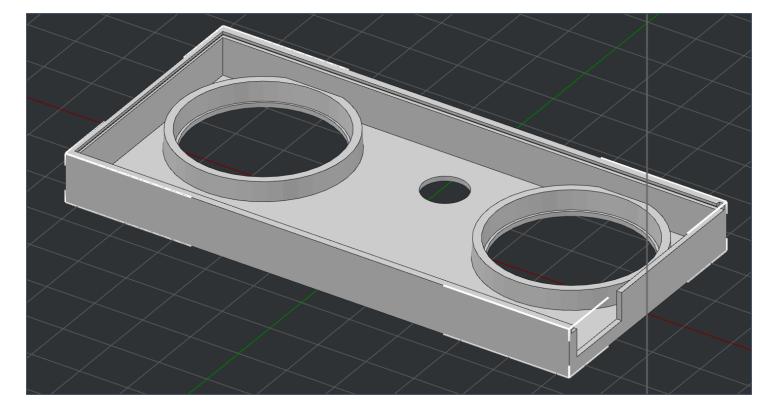
Predator Defense: Strobe light lens selection

Glass	Wavelength Range	Refractive Index	Abbe Num.	Available Focal Lengths	Price
N-BK7 (Uncoated)	350nm - 2.0µm	1.515 at 633nm	64.17	10mm - 1.0m	\$24.92
UV Fused Silica (Uncoated)	185nm - 8.0µm	1.460	67.82	10mm - 1000nm	\$110.36
CaF2 (Uncoated)	0.18µm - 8.0µm	1.428	94.99	15mm - 200mm	\$208.47
ZnSe	7μm - 12μm	2.403 at 10.6µm	20 - 1000	15mm - 200mm	\$342.54

Predator Identification and Defense Optical Design Breakdown • To calculate FOV the following formulas were used:

$$\frac{1}{EFL} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3}$$

sensor size = array size x pixel size


$$FOV = \frac{2 \times tan^{-1}(D)}{2 \times EFL}$$

- FOV found to be 148.5 degrees
- Lens mounts designed on SolidWorks shown below:

Predator Identification and Defense Optical **Design Breakdown**

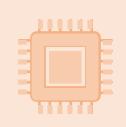
- Four sets of 5 LEDs positioned on the collar
- Lens holder designed in SolidWorks shown to the right:

PCB Design

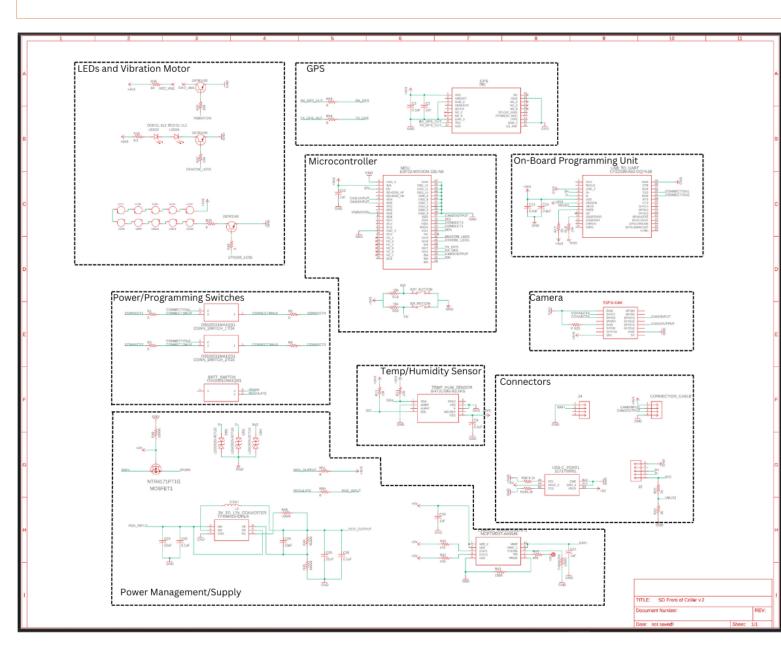
Software: Eagle 9.6.0

Constraints:

- Size
- Orientation of ports
- Spacing

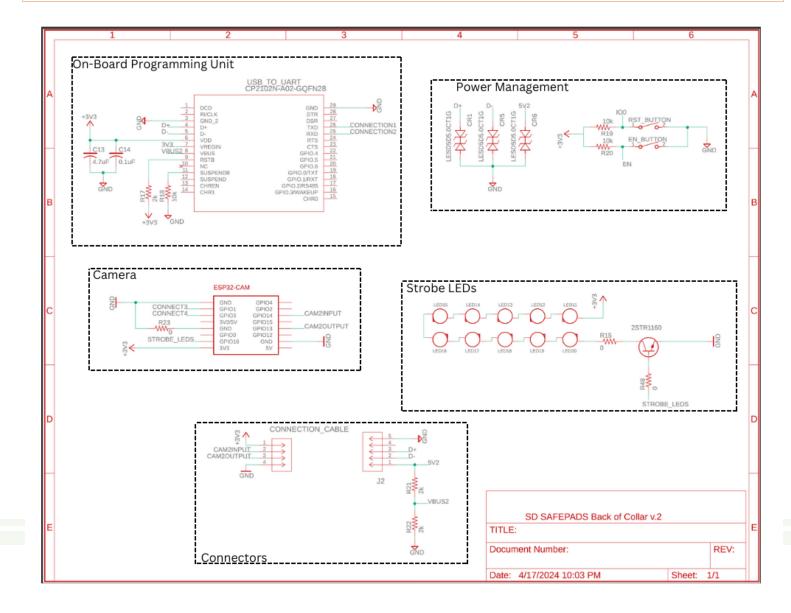


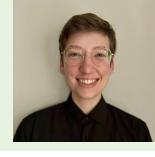
Sara Wijas - EE

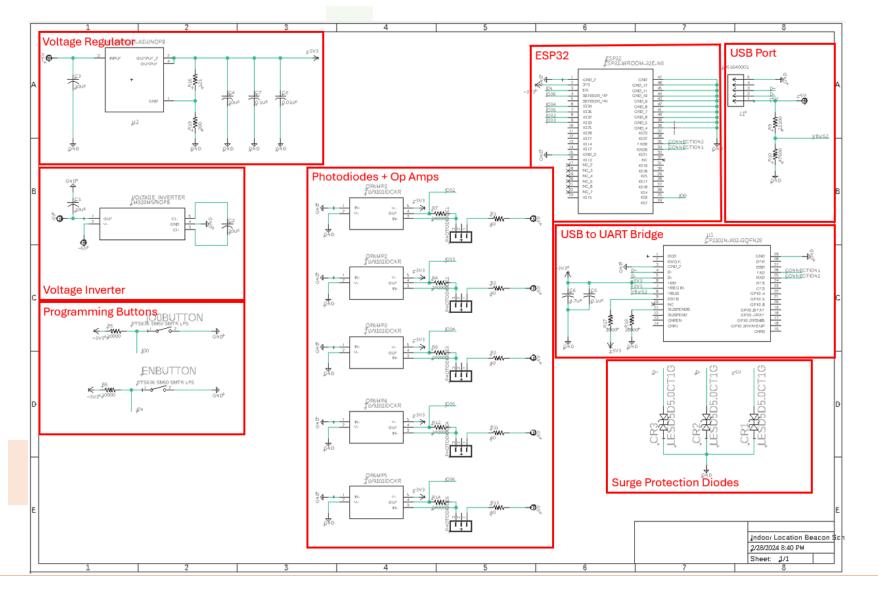

Vendor: PCBWay

Constraints:

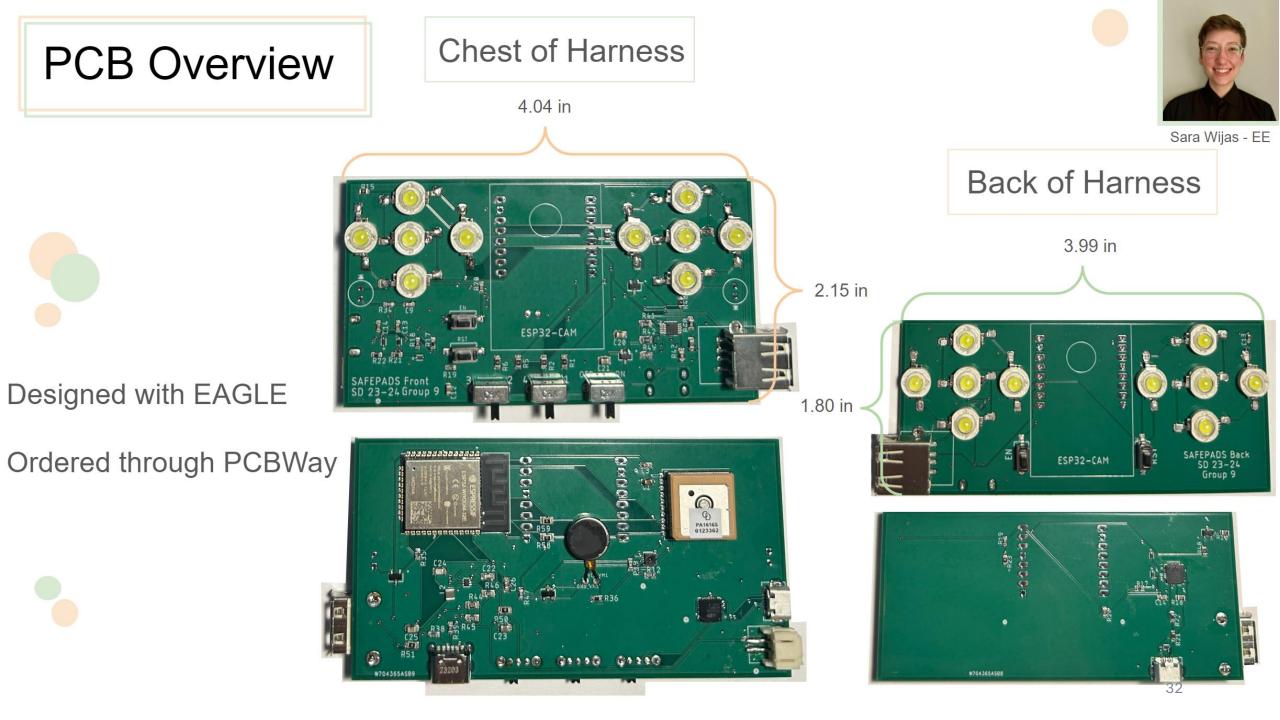
- Shipping time
- Price

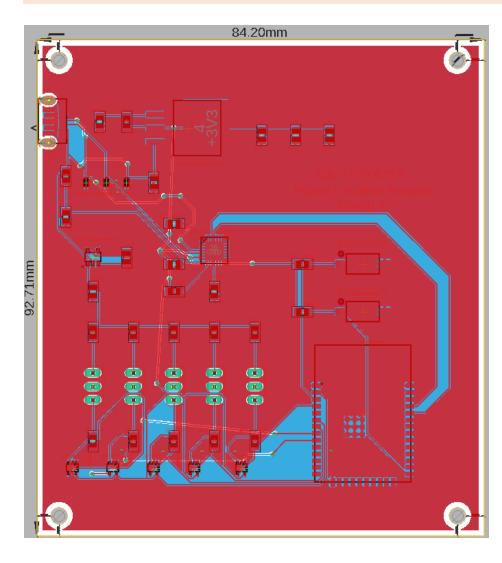

Chest of Harness Electrical Schematic




Sara Wijas - EE

Back of Harness Electrical Schematic

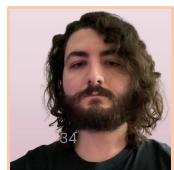

Sara Wijas - EE



Austin Fugate - EE

Indoor Location Beacon Schematic

Indoor Location Beacon Board



Austin Fugate - EE

Final GUI Design

Sile Edit Selection	View Go 🚥 gui2.py - SENIOR - Visual Studio Code 🛛 🔲 🗔 🗍 🛛 🖓 — 🗆 🗡						
EXPLORER ····	📌 gui2.py × ≡ beacons.txt ≡ values.txt ≡ holding.txt 🔮 cam1.p ▷ × 🗍 …						
✓ OPEN EDITORS							
🗙 🍖 gui2.py	46 for key, value in kwargs.items():						
≣ beacons.txt	47 if key == "Geofence_Enabled": Prototype GUI						
≡ values.txt	48						
≣ holding.txt	49 if key == "Within_Fence": 50 data[1] = value + '\n'						
🔹 cam1.py	50 data[1] = value + '\n' 51 if key == "Training_Mode": 52 data[2] = value + '\n' 53 if key == "Temp Hazard":						
🔮 cam2.py	52 data[2] = value + '\n'						
🐵 test.py	53 if key == "Temp_Hazard":						
≡ fences.txt	54 data[3] = value + '\n'						
🕐 reciever2.py	55 If key == "Camera_Enable":						
✓ SENIOR							
e controller.py	57 if key == "Indoor_Beacon_Enabled": 58 data[5] = value + '\n' GPS Services						
≣ fences.txt	59 if key == "Indoor_Beacon_Triggered":						
🍖 gui2.py	60 data[6] = value + '\n'						
. ≣ holding.txt	61 if key == "Vibration_On": Sensor Info						
reciever.py	62 data[7] = value + '\n'						
🗬 reciever2.py	63 if key == "Vibration_Level":						
🔹 sender.py	64 data[8] = value + '\n' 65 if key == "Predator Detected":						
🍨 test.py	66 data[9] = value + '\n'						
≣ training.txt							
≣ values.txt	PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL AZURE $+ \sim \cdots \sim \times$						
🔹 view.py	/Desktop/SENIOR/.venv/Scripts/python.exe c:/Users/JesusPagan/Desktop /SENIOR/gui2.py ▷ powershell						
> TIMELINE	O (.venv) PS C:\Users\JesusPagan\Desktop\SENIOR> & c:/Users/JesusPagan						
> OUTLINE	/Desktop/SENIOR/.venv/Scripts/python.exe c:/Users/JesusPagan/Desktop						
> AZURE IOT HUB	/SENIOR/gui2.py						
× ⊗0∆0	Ln 60, Col 35 (24 selected) Spaces: 4 UTF-8 CRLF () Python 3.11.0 ('.venv': venv) 🖗 Go Live 🔗 🗘						
Current temp Near record	井 Q Search 🔉 🖬 🗊 🚬 🍕 🌍 😚 📮 🔹 ^ 👄 🔏 🎙 🖘 d× 🗈 🕺 🖇 🌲						

		Item Description	Vendor	Quantity	Price per Unit	Price
Budget		ESP32 WROOM Microcontroller	Amazon	5	\$5.60	\$27.99
Duuget		PA1616D GPS Module	Adafruit	1	\$31.94	\$31.94
		Adafruit Vibration Motor 1201	Digikey	1	\$1.95	\$1.95
Total Sponsorship	\$1000	OED-EL-1L1 LEDs	Mouser	10	\$0.43	\$4.30
		OED-EL-1L2 LEDs	Mouser	10	\$0.35	\$3.54
		SFH 2200 Photodiodes	Mouser	10	\$1.39	\$13.90
		HOYA IR85N Filter	Edmund Optics	1	\$44.00	\$44.00
		45-077 Lens	Edmund Optics	2	\$26.00	\$52.00
		10 mm Ball Lens	MSE Supplies	1	\$16.20	\$16.20
		SHT31-DIS-B Temp/Humidity Sensor	Digikey	1	\$5.42	\$5.42
		2000 mAh Lithium-Ion Battery	Amazon	1	\$11.99	\$11.99
		OV5640 Camera Board	Amazon	2	\$25.99	\$51.98
		Wide Angle Lens	Amazon	2	\$45	\$45
		SMD LEDs	Amazon	10	\$1.72	\$1.72
		Collimating Lens	Thorlabs	1	\$24.92	\$24.92
		PCBs	PCBWay	10 (each)	\$5	\$136.83
		Project Sub-Total				\$460.20

Work Distribution

Task	Primary Person	Secondary Person	
Microcontroller Comparison and Testing	Sara Wijas	Austin Fugate	
Temperature and Humidity Sensor Comparison and Testing	Austin Fugate	Sara Wijas	
Global Positioning System (GPS) Comparison and Testing	Austin Fugate	Sara Wijas	
Power Supply Design and Testing	Austin Fugate	Sara Wijas	
Indoor Location and Fencing System Optical Design	Rana Scherer	Nadia Khan	
Indoor Location and Fencing System Testing	Rana Scherer	Nadia Khan	
Strobe Light Design and Testing	Nadia Khan	Rana Scherer	
Wide FOV Camera Sensor Comparison	Nadia Khan	Rana Scherer	
Wide FOV Camera Optical Design	Nadia Khan	Rana Scherer	
Wide FOV Camera Testing	Nadia Khan	Jesus Pagan Vela	
Vibration Motor Comparison and Testing	Sara Wijas	Austin Fugate	
Front of Collar PCB Design	Sara Wijas	Austin Fugate	
Back of Collar PCB Design	Sara Wijas	Austin Fugate	
Indoor Location and Fencing PCB Design	Austin Fugate	Sara Wijas	
GUI Design	Jesus Pagan Vela	Sara Wijas	
Software Design	Jesus Pagan Vela	Austin Fugate	
Image Processing Testing	Jesus Pagan Vela	Austin Fugate	

