
Project I.R.A.S. (Integrated
Real-Time Assistance

Spectacles): Voice-to-Text and
Color Detection AR Glasses

Carlos Acosta, Darlandie Moise, Brian
Umbrechet, Kim Le

Department of Engineering and Computer
Science and College of Optics and Photonics,

University of Central Florida, Orlando,
Florida, 32816-2450, U.S.A.

Abstract — This paper outlines the hardware and software
functions using various methods to design a pair of smart
glasses that enables the user to view projected text and
outlines, for both features of color detection and speech
detection or translation, concurrently with their
surroundings. Demonstrating the results and functions of
the designs produced which are sectioned into the following
categories: (1) Camera Lens Design; (2) AR Projection Lens
Design; (3) Speech to Text Software Design; (4) Color
Detection Software Design.

Index Terms — Augmented reality, image sensor, imaging
lenses, LCD, microprocessor, optical reflection

I. INTRODUCTION

The project was developed based on personal
motivation and genuine passion to create a technology
that would significantly benefit those with hearing
impairment and color blindness. Project IRAS (Intricate
Real-time Assistance Spectacles) is the next step for
smart glasses. Our main overall project goal is to create
a functional pair of glasses that will have two separate
modes: one mode that will display real-time subtitles of
who the user is talking to, and the other mode that will
follow outlines for the user who has trouble
distinguishing specific colors around their environment.
This project will bring together the ideas of augmented
reality and the need to give a hands-off experience
while acquiring real-time data to assist those with
difficulties hearing, color blindness, or even traveling.

Each component has been researched for its
specifications and compatibility with one another for
incorporating them into our design. For the optics, we
designed a lens system for the camera (more in the
Camera Lens System Section) and the projection of the

text from the LCD (more in the Lens Projection System
Section). We purchased the best camera and LCD
considering our budget and availability in the market.
Once we decided which lenses we would design, we
purchased the lenses after calculating the focal lengths
and field of view that we required for our system
specification. We then tested multiple variations of AR
projections on lenses and wide-angle camera systems.
During our initial testing, we slightly redesigned and
calculated varying focal lengths, FOV angles, and depth
of field for our proposed design to line up with our
project’s specifications.

The computer science majors have researched different
operating systems, various speech-to-text application
programming interfaces, and current speech-to-text
services. They also researched ways for object tracking,
color detection, capturing audio, and controlling the
device with a mobile app. This helped them determine
which systems to utilize and how they wanted to
proceed with the project and design their code. They
approached programming the glasses to display live
speech-to-text and color detection with object tracking.
Their first objectives were to display one language and
set of colors to work, as well as customize how the
information is displayed. Later objectives would
include multi-lingual support, a wider range of color
blindness detection, improved display, and utilization of
existing options for mobile control of the device.

II. CAMERA LENS SYSTEM

A. Calculations for the Required Camera FOV
While the exact numbers for the Zemax simulation have
some error percentage, the exact specifications for the
lens system, camera sensor, and compatibility can be
proven with some basic mathematical equations that are
covered by geometrical optics and visual optics. These
equations range from finding the actual Field of View
(FOV) for the lens system to the potential image spot
size not just mentioned within the lens system
specifications but also how the image would display on
the CMOS sensor [1][2].

To start, the FOV can be determined by first finding the
horizontal FOV as follows:

FOV = 2 () (1)𝑡𝑎𝑛−1 ℎ
2𝑓

Where “h” is the width of the sensor and “f” is the
effective focal length of the lens system, which at the
time was h = 3673.6 µm and f = 3.6 mm. This makes
FOV about 54° which is roughly the 60° FOV we’re
looking for in our system. The camera module also
comes with its own FOV but it is not wide enough to
accommodate the parameter we are looking for, which
is why this kind of lens will not only widen the FOV

but enlarge the images for the camera to see a wider
area of objects for our project.

Magnification plays a huge part in figuring out exactly
how wide and tall the CMOS sensor should be initially
when compared to scanning its surrounding
environment. To find the rough magnification of our
system we use the following equation:

M = (2)ℎ
𝐹𝑂𝑉

With “h” being the width of the sensor area and FOV
the horizontal FOV of what the sensor is trying to
capture, which in this case is “h” = 3673.6 µm and FOV
= 0.541, equation the magnification M to be about
x0.007. It makes sense in this case since we are trying
to capture a wide object in such a small image area, so
reduced magnification must occur for this to happen.
With every lens system, there comes the description of
the F-Number, which currently is ½ for the lens system.
While fine, we need to reduce this number to allow
better capture images for the camera sense, which can
be calculated as follows:

F/# = (3)𝑓
𝐷

Where “f” is the focal length of the lens system and
“D” is the diameter of the aperture allowing light
through. In our current setup the focal length “f” is 3.6
mm and the aperture diameter “D” is roughly 1.2 mm,
making F/# = 3. This number can be changed
depending on the diameter of the aperture and will help
us in a later equation.

As mentioned before, to reduce the chromatic
aberration the lens system must come with equipment
with a low enough Numerical Aperture value which can
be stated as follows:

N. A. = (4)1
2*𝐹/#

Where F/# is the F Number of the lens system (which
was previously calculated). Currently the desired N. A.
the design is aiming for is ⅙, which is roughly N.A. =
0.17. This tells us about the resolution power the
camera will be experiencing as well as increasing the
clarity of the images captured as well. The working
distance of our lens system would work in our favor as
we want to capture objects no farther than 1 meter. so,
to calculate the average working distance that would
benefit our system we must use the following equation:

W.D. = (5)𝑓
𝑀

Where “f” is the effective focal length of our design and
“M” is the magnification of our lens system. In this
case from our previously calculated values if “f” = 3.6
mm and “M” = x0.007, then our working distance
“W.D.” = 0.514 m, which is roughly the ballpark of
where we want the lens system to focus.

Following through with the previously stated FOV, the
horizontal FOV in our lens system can be equated as
follows:

Horizontal FOV (mm) =
Working Distance (mm) * 2 () (6)𝑡𝑎𝑛 𝐹𝑂𝑉 (𝑑𝑒𝑔𝑟𝑒𝑒𝑠)

2
Here, we have already collected the Working Distance
which is 514 mm and the original FOV of the lens
system in degrees which is 54°, which equates our
horizontal FOV to be about 524.1 mm. Taking that
value, we can calculate the sensor resolution of our
CMOS sensor which is capable of capturing good
images with the following equation:

S.R. = 2() (7)𝐹𝑂𝑉 (𝑚𝑚)
𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝐹𝑒𝑎𝑡𝑢𝑟𝑒

The horizontal FOV of the lens system is 524.1 mm,
and the smallest feature is the smallest width of our
camera that can operate, which in this case for our
CMOS camera is about 0.896 mm. Equating this
formula we come up with about 1170 pixels needed
minimum for our camera to operate at a good quality
resolution, which is perfect since the camera can be
formatted to have a 1280x960 resolution. The image
circle diameter, another important equation to not look
over, is what allows the user to see what exact kind of
lens system to look for when trying to compare the
sensor’s dimensions to what can be captured. The
image circle diameter can be equated as follows:

I.C.D. = (8)𝑤𝑖𝑑𝑡ℎ2 + ℎ𝑒𝑖𝑔ℎ𝑡2

Where the width is the measured width of the sensor
and the height is the measured height of our sensor.
Taking the already established specifications of our
OV5647 CMOS sensor, we get our Image Circle for
good quality imagery cooperation to be about 4.58 mm.
This fits well within our sensor’s areas as we want the
diameter of the image circle to perfectly encapture our
sensor, but not either stretch too far or come up short of
our sensor’s dimensions. Current simulations from
Zemax show the circle comes up to about 3.52 mm,
which is 1 millimeter short however that can be
adjusted later within the physical project.

B. Camera Choice/Specifications
The 5MP OV5647 Autofocus Camera is essentially the
Mega 5MP SPI minus the bulky nature. The camera has
the same sensor as the Mega 5MP SPI, Omnivision
OV5647 sensor has the same 5 Megapixel 2592 pixels
wide and 1944 pixels high as before. The sensor has the
same special features as visible light capture being a
similar FOV of 54 degrees horizontally and 44 degrees
vertically, a similar autofocus that is programmable,
similar wide usage of applications, and open source for
multiple MCUs. The CMOS sensor is also just as big as
before being ¼”, however, it has a focal length of 2
inches to infinity, making it more flexible for the lens
system. The camera is also more compact being only 25

millimeters wide and 24 millimeters tall, as well as
about 4.5 millimeters thick, giving it more flexibility to
set up on our glasses.

C. Lens Design Simulation and Modeling
Due to the combined nature of the Ov5647 CMOS
sensor and its additional features of having an already
established 60° FOV format, a new lens system must be
constructed to adhere to the optical design
requirements. In that case, the next best approach is to
establish a new lens system that combines the lenses of
other M12s and creates a new about 80° FOV lens
system. Table 1 lists all the components that are within
the custom-made lens system, both the types of optical
components used and the pieces that make up the
overall lens system design. To start, we strip the lenses
contained within the 80° and 100° FOV M12 lens
systems. By taking the spacers and lenses with the lens
systems, we were able to establish a lens design that
visually widens the FOV of the camera and provides
little chromatic distortion. A Zemax simulation is
provided that shows how much the lens system alters
the viewing experience.

Figure 1: Spot Diagram of 80° FOV on Zemax with varying
wavelengths (550 nm - 7 nm).

Figure 2: Cross Section of 80° FOV Lens System on Zemax
with a Total Axial Length of 19.7 mm.

While the cross-section of the lens system isn’t exact to
the official design, it still provides almost the same
information with the total effective focal length of the

system being about 10.5 mm and the length of the lens
system a rough estimate. Unfortunately, as mentioned
before, the providers of the M12 lenses refuse to share
details of the lenses within the lens system, making
testing and measuring the lenses some human error.
Regardless, this newly established system provides a
clear but wider FOV for our camera to utilize, which
does not compromise our camera’s viewing quality. As
shown in Figure 6, the lens system provides a spot
diagram that still keeps the colors from being very
distorted. While chromatic aberration is still present, it
is kept minimal towards the end of the spot diagram
when viewing the 80° FOV.

Part Specification Purpose

Lens
System
(1.2)

Pinhole diameter - 4 mm with a
thickness of about 1 mm. Small
housing diameter 5.2 mm and
the depth is about 2.3 mm.
Larger housing diameter - 10.6
mm and a depth of about 2.5
mm. Outer diameter - 14 mm
with a height of about 5.8 mm

Houses the
optical design of
the camera

Lens Cap
(1.4)

Outer diameter - 18mm, Larger
Inner diameter - 16mm,
Smaller Inner diameter - 10
mm. Length of Lens Cap - 2.5
mm with the inner thickness
being about 1 mm

Caps the lenses
within the lens
system and
keeps them from
falling out

Plastic
Spacer
(1.3)

Inner diameter - 4.6 mm Outer
diameter of 10.6 mm, with a
thickness of about .1 mm

Separates and
holds the lenses
in place

Metallic
Spacer
(2.3)

Diameter - 5 mm, Thickness - 1
mm

Keeps the
smaller lens in
place and
separate from
the larger lens,
little distortion

Smaller
Lens (2.2)

Diameter - 3 mm and 4 mm,
Thickness - 2 mm, Focal
Length - 10 mm

The entry lens
for the optical
design

Larger
Lens (2.4)

Diameter - 10 mm, Thickness -
2 mm, Focal Length - -17 mm

The main lens
providing the
FOV of the lens
system

Lens
Mount
(1.1)

Base - 18 mm x 18 mm Inner
diameter - 14 mm Outer
diameter - 16 mm

Holds camera
and lens system
together

Camera
(2.1)

8.5 mm x 8.5 mm x 5.4 mm The main source
for visual input
of our project

Table 1: This table lists all the separate pieces that
encompass the Mutated Lens System.

Figure 3.1: Cross-section of Mutation Lens System on
SolidWorks Color Coded and Numbered: Lens Mount (1.1),

Lens System (1.2), Spacer (1.3), and Lens Cap (1.4)

Figure. 3.2: Cross-section of the Mutation Lens System on
SolidWorks with the Labeled Parts within the System. Camera
(2.1), Smaller Lens (2.2), Metallic Spacer (2.3), and Larger

Lens (2.4).

As mentioned before, the point of the titled “Mutation
Lens System” is to widen the camera’s FOV from its
established 60° to about 80°, allowing the camera to
track the user’s surroundings with a wider scope. There
is slight distortion when adding the extra lenses on top
of another lens system, however, this does not reduce
the camera’s image quality and thus does not hinder the
visuals.

III. LENS PROJECTION SYSTEM

Several designs were considered and tested for the lens
projection. We ultimately decided to use an LCD TFT,
two lenses, a mirror, and a beamsplitter, as shown in the
figure below.

Figure 4: Lens Projection Design

The display used is the 1.69-inch color LCD TFT
module with 240 x 280 resolution and brightness of 480
Cd/m² or nits. This display was much bigger than
originally designed, but it was much more compatible
with our components needed for the software design.
One of our concerns for this design was choosing the
right display that’s not only compatible with our other
components but also makes sure that the total output
brightness of the display will be sufficient. With this in
mind, we were able to collimate the light and keep all
our optical components in a small dark black box to
ensure minimal light loss. This helped create the most
optimal and finest projection for the user to see a
well-focused projected image with a clear surrounding.

First, the texts and images will travel from the LCD to
the plano concave lens, with a 1.5-millimeter distance
between the two. This helps to maintain a clear and
legible text throughout by minimizing any sort of
distortion. Keeping the lens closer to the display, it
ensures that the magnification is not decreased, which
would occur as the light rays diverge more since a
plano concave lens is being used. The lens has a -50
mm focal length and 25.4 millimeters diameter to
ensure that the text can be properly centered to capture
the entirety of the LCD and roughly 5.5 mm edge
thickness, which was taken into account for the design
of the hardware. With this lens we were able to design,
the most effective distance to project the best image
without compromising the magnification using the
following equations:

(9)1
𝑓 = 1

𝑑
0

 + 1
𝑑

𝑖

(10)𝑀 = −
𝑑

𝑖

𝑑
𝑜

Where “f” is the focal length of the lens, and “ ” is the𝑑
0

distance of the object, which in this case would be
considered our display being used. The distance

between the lens and the image is represented by “ ”.𝑑
𝑖

We utilized Eq. 9, the thin lens equation, and Eq. 10,
the magnification equation, to ensure the correct
distances between each component. With these
equations, we were able to keep the magnification at
0.952 before utilizing our other lens. This was very
important in this design, due to the display size being
significantly larger than we had previously designed
and the size of all of our lenses and mirrors being 25.4
mm in diameter. Any major magnifications done to our
design would cause the text to be cut off on the sides. It
would also result in us needing to minimize the text
from the software and would become substantially too
small for the user to view.

The lens is then followed by a silver-coated mirror,
placed 3.5 millimeters away at a 45° angle. This
enables us to form a real image in the mirror, as well as,
mirror the text to be read correctly at the final image.
The silver coating helps us maintain a clear and bright
image due to this type of coating’s high reflectivity
greater than 97% compared to regular mirrors. The
manufacturing of this type of mirror removes any
defects in comparison to regular mirror construction
and contributes to its high reflective surface quality. It
also removes any distortion or double image, as we
have previously tested, that would have been created
due to its reflective surface quality. Its reflectance
enables us to produce an image with brighter
reflectivity while minimizing scattering.

A plano convex lens is placed 7 mm away from the
mirror. This also serves to slightly magnify the text and
image. In this part of the design, we also utilized
equations 9 and 10, which led to a 1.38 magnification
of the texts and images without causing any parts to be
unseen. This lens helps with the projection of the texts
that can easily overlay onto the beam splitter and the
user’s environment. This final lens of 25.4 mm focal
length enables us to maximize the user experience by
being able to properly adjust the beam splitter without
compromising the user’s field of view.

Lastly, we use a beam splitter that has the dimensions
of 40 mm x 30 mm x 1 mm and 70T/30R transparency
and reflectivity, making it clear enough to allow the
user to see both what’s in front of them and the text and
outlines that are projected from the LCD. The optical
design for the text projection was designed for the user
to be able to see the text on the reflector/beamsplitter,
while still being capable of seeing their environment,
which is very much possible with 70% transparency.
The beam splitter is coated with an anti-reflection
coating to make sure the text is clear and is at the best
optimal distance with the help of the final lens. We have

previously wanted to use clear acrylic sheets as our
reflector for the image, but we quickly realized the
poorness of the image quality. Utilizing a beam splitter
with anti-reflection coating, helps us to reduce
reflections on the surface that may cause ghosting to
occur. The use of the beam splitter greatly helps our
design to guarantee transparency and enhance clarity
while reducing any glare that may affect the images or
the user’s experience.

IV. HARDWARE DESIGN

The overall design of the glasses can be broken down
into two main pieces: the thick glasses with the
Raspberry Pi 5 and camera/microphone attachment and
the main optical housing that holds the lens system for
LCD AR projection to occur.

A. LCD Projection Housing
The following picture (Figure 4) shows the Solidworks
model of the LCD Housing which has 3 sub-parts, the
main housing (1), the support beam for the beamsplitter
(2), and the beamsplitter holder (3).

Figure 5: Solidworks LCD Housing that has 3 sub-parts, the
Main Housing (1), the Support Beam for the Beamsplitter (2),

and the Beamsplitter Holder (3).

The beamsplitter holder (3) is designed to hold our
glasses’ beam splitter which has the dimensions that
stay respective to the beamsplitter, as previously
mentioned, also has a flat wide base that stretches to 10
mm which provides additional flexibility to the support
beam. The support piece for the beamsplitter holder (2)
is designed to hold the beamsplitter and LCD housing
close to each other. With the optical design, we had to
consider the eye box of the glasses. This is the area

where the text/image is displayed at the right focus.
This also includes the range of eye movements, while
maintaining a clear image. While a larger eye box is
much more beneficial for the user without
compromising the clarity and visibility of the image, it
can be a great disadvantage that affects the field of view
of the user. With this in mind, the end of the beam
splitter is angled directly toward the LCD housing,
giving the user the ability to see the text and outlines.
The support piece is also lightened with
industrial-strength velcro for the outside of the LCD
housing, giving the user the option to easily adjust the
beamsplitter to their preferred viewing distance. This
takes into consideration the variety of users that will be
able to use these glasses and gives them the ability to
easily adjust the beam splitter based on individuals.

The main piece, the LCD projection housing (1), is
designed to fit each of the required optical components
(lenses, LCD, and mirror) at the proper distance
between each other with little to no wiggle room. The
shape of the outer shell of the housing is thin enough to
keep the structure together with a thickness of 2 mm.
The long wide piece that sticks out off the side of the
housing opposite to the side that holds the beamsplitter
is a surface aligned with velcro that allows the LCD
housing to stick to the glasses frame easily, also
allowing the user to adjust the projection to his/her
fitting. There is also a roof for the housing that helps
close the LCD projection shut and keep all the optical
components in their fixed place. There is also another
support beam that will be aligned with the top of the
LCD housing, aka, the roof of it.

B. Glasses
Our initial approach was to procure a pair of thick
glasses that any individual, regardless of already
wearing spectacles, could still utilize. While we still
plan to try reaching that goal, our current prototype still
allows the user to easily wear the glasses with little
trouble in maintaining them and keep the housing of the
LCD projection system on their side as well. The thick
pair of glasses are commercially available and gave us
the convenience to apply velcro to the sides and top of
the glasses to allow easy implementation of the LCD
housing with the beamsplitter attached on the side. The
other side also has a counterweight to balance the
glasses. The Raspberry Pi 5 and the cooling fan are
mounted on the side of the user’s head with velcro
applied to keep it centered, with wired running off the
side to the LCD housing to the input components of the
camera and microphone attached to the top front of the
glasses. Again, thanks to the huge frame of the glasses,
the components can be easily velcroed/taped on.

The final overall design, shown in Figures 6 and 7, has
led to the project being about 10 ounces, just under 1
pound. This combined with the bulky nature of the
current version of the glasses has led to users having to
try to hold the glasses up while looking around.
However, the design has little interference with the
glasses' main functionality.

Figure 6: Project I.R.A.S. final design that can be divided into
4 parts, the LCD Projection Housing (1), the Mutated Lens
System + Camera (2), the Raspberry Pi 5 (3), and the Main

Glasses Frame (4).

Figure 7: One of the colleagues testing the glasses' color
detection values.

Further testing is required but so far minimal shaky
traversal shows positive results and people who have
been diagnosed with color blindness have given helpful
feedback to help improve our project. Valued feedback
was encouraged to better suit these glasses for
everyone.

V. SPEECH-TO-TEXT SOFTWARE

To implement the speech-to-text, two methods were
considered; the utilization of a cloud-based service or
an offline, and completely onboard solution. We
decided accuracy was the most significant priority and

settled on using Speechmatics [3]. Speechmatics is a
speech AI company that develops speech recognition
software. The key features that they provide which we
were most interested in are real-time transcription and
translation, high accuracy, a wide range of languages,
and ease of implementation.

When implementing speech-to-text, we initially started
with the Xiao ESP32S3 Sense. We started testing by
seeing how to capture audio using the onboard
microphone and streaming the input over WebSockets.
WebSockets is an internet communication protocol like
HTTP. It allows for constant, real-time bidirectional
communication which is ideal for our goal [4]. Once we
were comfortable with that, we created a NodeJS server
that would receive the live WebSocket transmission. We
chose to use NodeJS because Speechmatics didn’t
indicate how to use their service in C++ which is the
language we were programming the ESP32 in, and
JavaScript was easier for us to code with. Also,
Speechmatics provided an example to follow in
JavaScript. The server waits for a WebSocket client to
connect, then upon receiving data from the client, it
sends it to the Speechmatics servers, and then it’ll
receive a response in the form of a transcription or
translation. This text will then be sent back to the
ESP32 and displayed using proper formatting so that
the text fits well on the screen and refreshes constantly.

Figure 8: Sequence Diagram for audio data transfer and
server interaction

Once we were able to utilize the server and transcribe
speech, we focused on improving the system. Starting
with the Wi-Fi, we had issues connecting to the campus
Wi-Fi and were forced to use a cellular hotspot. This
made the speech-to-text extremely slow and it skipped
words frequently. We did more research and were able
to connect to the UCF_WPA2 and eduroam
successfully by using an ESP32 WPA2 library. The
security of the campus networks was the issue. When
testing, we found that connecting to a campus network

was often inconsistent, but found that UCF_WPA2
worked the best. After the Wi-Fi, we implemented a
ping/pong system for the WebSocket connections so
that it could handle sudden disconnects from incidents
like loss of power. Previously, the server had to be
restarted every time we unpowered the ESP32 because
the server didn’t know that the WebSocket connection
had ended. The final improvement we made to the
server was hosting it on Amazon Web Service. We were
able to run the server for a year at no price at all. We
also made it so that the server ran in the background
constantly so that we wouldn’t need to have the
terminal open.

When we implemented color detection on the ESP32,
we found that it was extremely slow, so we decided to
switch to the Raspberry Pi 5. This meant most of the
progress we made previously had to be abandoned, but
we were able to utilize our familiarity with the previous
implementation to aid our future development. Initially,
we weren’t sure if we wanted to connect the ESP32 to
the Raspberry Pi and transmit the audio data over an
interface or just buy a microphone that connects
directly to the Raspberry Pi. We decided that the latter
was the simplest and went with that. Implementing
Speechmatics on the Raspberry Pi was significantly
easier than on the ESP32. This is because Speechmatics
had an example of how to transcribe audio from a
microphone in Python using their service, which is
exactly what we needed. This also meant we did not
need the NodeJS server which helps in reducing
latency. Combining the speech-to-text program with the
color detection program was the hard part. The
speech-to-text program had to be run while in a virtual
environment because it was dependent on the
Speechmatics library which had to be installed using
pip. This meant we couldn’t just combine the two
programs into one file. The main issue we had was with
the GPIO pins indicating they were being used, even
though we were clearing them. We were able to use
print to the screen in the color detection program, but
once it switched to the other, it consistently threw an
error related to GPIO. We spent many hours exploring
threads, imports, and subprocesses, to figure out how to
connect both programs, and settled on using
subprocesses. By using subprocesses, we could start the
speech-to-text program using its virtual environment in
the color detection program. This allowed us to have
control over it using Blynk and send arguments over to
indicate the translation mode. To solve the GPIO issue,
instead of printing the text in the speech-to-text
program, we send the text over stdin and listen to it in
the color detection program. We also implemented
formatting so that the text will appear cleanly. The final
issue we encountered was connecting to the campus
networks. Again we had inconsistencies connecting.

Some days it would work and others it wouldn’t, but
once it connected, the speech-to-text had no issue.

VI. COLOR DETECTION SOFTWARE

The color detection mode uses the OpenCV-Python
library to recognize colors using a technique called
color space conversion and thresholding to detect colors
in images. Images are typically captured in RGB (Red,
Green, Blue) format. However, detecting colors directly
in RGB is not very efficient due to lighting variations
and dependencies between color channels. OpenCV
offers functions to convert the image from RGB to
other color spaces like HSV (Hue, Saturation, Value).
HSV is more intuitive for color detection because Hue
represents the actual color itself (red, green, blue, etc.),
Saturation represents the intensity of the color, and
Value represents the brightness of the color. Once the
image is in HSV format, we can define a range of Hue
values that correspond to the color we want to detect.
OpenCV provides functions like cv2.inRange to create
a binary mask image where pixels within the specified
range are set to white (1), and all other pixels are set to
black (0). This mask image now highlights the pixels
that fall within the color range we specified. For our
application, we choose to overlay the bounding boxes,
corresponding to the widths and heights of the masks,
on the original frame to visualize the detected color
region. This decision helps to reduce the overhead of
drawing the contour outline for every frame while still
being able to present the colors by having the color’s
name on its top edge. We’re able to achieve an almost
real-time reaction using these techniques on the latest
Raspberry Pi 5, which is a huge improvement over our
old MCU choice, the Xiao ESP32, which had a latency
of around 2 seconds per image frame.

VII. THE MOBILE APP

To control the functionalities of the program without
the need to install physical buttons, we decided to go
with Blynk, a user-friendly IoT platform with mobile
apps (iOS and Android) to control the Raspberry Pi.
Blynk provides a cloud service that acts as a central hub
for communication between the hardware and mobile
app. It offers a visual programming interface where we
can drag-and-drop widgets to build the UI for our app,
and secure communication between the devices and the
cloud using authentication tokens. These simplify the
development process by a great deal and allow us to
spend valuable time focusing on and refining the main
program’s code. We opted for the Maker plan which
costs $7 a month and caters to up to 20 devices. It has
enough widgets to set up our template with two main
tabs, Color Detection mode and Speech Translation. In
the Color Tab, there is an on/off button and 7 other

buttons to choose the colors the users need to detect.
Similarly, in the Speech tab, there is a button to turn on
or off and several more to choose the languages they
want to translate from and to. Currently, a user can join
with his or her email and open the link within the Blynk
app to get our project's template to control the glasses.

Figure 9: Our Blynk mobile app’s user interface.

VIII. CONCLUSION

Project I.R.A.S has been created with all of these design
implementations previously mentioned and their
complexities to create a pair of wearable smart glasses
that support speech dictation and translation to multiple
languages, and color detection. Despite various
challenges, such as electrical component complications
and incompatibilities, we have been determined to
explore alternative possibilities. Thus, our final
prototype design results from our dedication and
collaboration.

ACKNOWLEDGEMENT

The authors would like to acknowledge the assistance
of Dr. LiKamWa, Dr. ChungYong Chan, and Dr.
Aravinda Kar for their guidance throughout our project.
We would also like to thank the College of CREOL and
the College of Computer Science for giving us the
necessary space, guidance, and resources to help us
develop this project. We also extend our gratitude to the
professors who have agreed to review our project.

BIOGRAPHY

Carlos Acosta

Graduating from CREOL with a B.S. in
Optics and Photonics, Carlos Acosta has
his eyes set on taking it to the next level,
pursuing a PhD. at the prestigious Boston
University. He plans to continue pursuing
his research in Biophotonics and take his
interest to better the lives of those with the
advancement of medical optics.

Brian Umbrechet

Graduating from UCF with a bachelor’s
in Computer Science, Brian enjoys
working on tough projects and learning
new ideas. He plans to explore software
engineering after graduation and work his
up the ladder.

Darlandie Moise

Graduating from the University of
Central Florida and receiving her B.S.
in Photonic Science and Engineering.
She currently works as an R&D
Optical Engineer Intern at Everix. She
plans on continuing her work at this

company as an Optical Design Engineer upon graduation.

Kim Le

Graduating with a Bachelor's in Computer
Science from UCF, Kim is fascinated by
the intersection of technology and
interactive experiences. She is fueled by
caffeine, a passion for problem-solving,
and a drive to deliver the best result with
her capability.

REFERENCES

[1] Yobani Mejía. “Fundamentals of Optics: An
Introductory Course.” SPIE EBooks, 5 Jan. 2023,
https://doi.org/10.1117/3.2660873.

[2] Sarkar, Mukul, and Albert Theuwissen. A
Biologically Inspired CMOS Image Sensor. Studies in
Computational Intelligence, Springer Berlin,
Heidelberg, 1 Jan. 2013.

[3] Çakar, Debi. “Speech Recognition Accuracy
Comparison Test 2023.” SESTEK, SESTEK, 27 Mar.
2023,
www.sestek.com/speech-recognition-accuracy-compari
son-test-2023-blog.

[4] ArpitAsati. “What Is Web Socket and How It Is
Different from the HTTP?” GeeksforGeeks, 4 Dec.
2019,
www.geeksforgeeks.org/what-is-web-socket-and-how-it
-is-different-from-the-http/.

