

WATER CONTAMINANT ANALYSIS RAMAN SPECTROMETER

CRITICAL DESIGN REVIEW (FINAL)

Group 5 Sponsored by Ocean Insight

Our Team

George

McDonald

Photonic

Science &

Engineering

Julia Smith-Blanchard

> Photonic Science & Engineering

Sebastien Jouhaud

Computer Engineering

Khalil Electrical

Engineering

Gibran

Juan Restrepo Diaz

Electrical Engineering

Water Analysis Spectrometer

- Owned by our sponsor Ocean Insight
- A spectrometer and its illumination system are important tools to help give knowledge that could not be acquired either way. It is a method of understanding molecules and how they interact with light. By analyzing the amount of light absorbed or emitted through a sample we can determine the characteristics of the sample.

MOTIVATION

The overall quality of our drinking water is vital to the health and well-being of all living species on planet Earth, including humans.

Due to all the different sources of water, knowing which ones are safe to drink is essential to avoiding any kind of infections from water contaminants.

The goal behind our project is to create a water quality analyzer using Raman spectroscopy.

Julia Smith

Project Goals

The goal of this project is to build a portable, cost-effective Raman spectrometer that focuses on mainly measuring the contaminants in different water samples. Objectives are good to have to make sure that you are having standards for your project and that it is being fulfilled the prototype will meet the following goals:

Project Objectives

The **core objectives** of this project are to develop a compact spectrometer that contains simple mounted optics.

The **advanced objectives** use a combination of a well-plate reader and a detachable spectrometer to achieve a modular set-up. We will be using a 785 nm wavelength Raman laser and reduce fluoresce from signal.

Specifications and Requirements

<u>Specifications</u>	
Samples to measure	Potassium Perchlorate, Ammonium Nitrate, Sodium Sulfate
Spectral range	532 nm to 618 nm
Hardware Control	GUI fully operates well-plate motor and laser
Integration time	≤ 10 seconds
Computation of Raman Spectra	Software performs image processing of Fizeau fringes
Wavelength	785 nm
Sample size	40 ml
Max laser power	40mW to 50 mW
Spectrometer dimension	3.5" x 2.5" x 1.2"
Raman spectrum resolution	20 cm ⁻¹
Safety interlock engagement time	Instantaneously

Project Features

CONTAMINATI ON DETECTION

MODERATE SPEED

Work Distribution

- Investigate imaging techniques (Julia – P)
- Lens design (George P)
- Contaminant research and selection (Julia P)
- Spectrometer assembly and design (George – P)
- SHS modeling and simulation (Julia – P)
- Search components (George – P)

- Spectral Analysis (P)
- Spectrometer Research (P)
- C++, MATLAB, Serial
 Commands (P)
- Software integration and communication with various devices (P)

- PCB Design and Assembly (Juan – P)
- Power Supply Design (Juan P)
- Research in humidity and thermal impact (Juan – P)
- System integration (Gibran P)
- Precision motor design and selection (Gibran – P)
- Safety Design (Gibran P)

Photonics and Optics

Review on Raman Spectroscopy

SHS Design Equations

Grating Equation: $k[\sin(\theta_L) + \sin(\theta_L - \gamma)] = \frac{m}{d}$

Littrow Angle: $\theta_L = \sin^{-1} \left(\frac{n\lambda}{2d} \right)$

Fringe Equation: $v_F = 4(k - k_L) \tan(\theta_L)$

Resolving Power: R = (2)(groove density)(grating width)

Spectral Range: $SR = \frac{(number of pixels along detector)(\lambda)}{2R}$

Resolution (nm): $FWHM = \Delta \lambda = \frac{\lambda}{R}$

Resolution (cm^{-1}): $\Delta \omega = (10^7) \frac{\Delta \lambda}{(\lambda_{exc})(\lambda)}$

Raman Shift (nm) =
$$\lambda = \left(\frac{1}{\lambda_{exc}[nm]} - \frac{1}{\frac{Raman shift [cm^{-1}]}{10^7}}\right)$$

-1

<u>Optical Block</u> <u>Diagram</u>

• Illumination System

- Laser light guided to sample through emission fiber.
- Sample is struck by laser light.
- Collection fiber accepts scattered light.

• SHS

- Accepts input light.
- Composed of laser light, scattered light, Raman signal.
- Scattered light splits, diffracts, and recombines.
- Fringe image lands on detector to be processed.

Red arrows = light propagation

Optical Component- Collimator Design

C20SMA-B - Achromatic Fiber Collimator, f = 20 mm, 650 - 1050 nm

 A collimator lens is important design of the spectrometer because it changes the diverging point source to a parallel beam.

Optical Component-Imaging Design

Zemax Design

- Working Distance: ~75mm
- Image Distance: ~ 3.4mm from last surface
- Total optical track length: 99.6mm
- Effective Focal Length: 53.21mm

• 50 mm

Optical Simulation and Inverse Fourier Transform Result

• ZEMAX

Input three wavelengths into non-sequential ray

trace.

785 nm, 830 nm, & 885 nm

• MATLAB

- Image processing
- Note: Wavelength axis (x-axis) is configured to

scale yet.

Testing and Verification - Calibration

- Calibration using known light sources.
 - Light source must be within the anticipated spectral range.
 - $\,\circ\,$ Light source must be a line source.
- Selected light source:
 - Mercury Contains wavelengths in the expected spectral range of spectrometer with a great peak at 546nm.

Procedure:

- Insert light source, inspect fringes, Fourier transform, plot peaks against number of pixels on detector.
- Pick three peaks (statistical minimum).
- Determine pixel position of the peak. (x-axis is pixel position, y-axis is known peak position in nm)
- \circ Acquire linear calibration curve (y = mx + b)
- o Insert pixel number into x and retrieve y value.

<u>Testing and Verification:</u> <u>Resolving Power and Spectral Range</u>

• <u>Mercury</u>

- Resolving Power = $2wd = 2 \times (10mm) \times 300 \frac{l}{mm} = 6000$
- Spectral Range = $\frac{N\lambda}{2R} = \frac{(1944)(532nm)}{(2)(6000)} = \underline{86.184 \text{ nm}} \rightarrow \underline{2620.58 \text{ cm}^{-1}}$
- \circ Resolution = 0.4683nm

Testing and Verification - Calibration

• <u>Mercury</u>

- Known peaks: 546nm (265px), 576nm (731px), and 579nm (829px)
- $\circ \ R^2 = 0.9887, \quad y = 0.0609x + 530.29$
- Note: Peaks that shift by 800cm⁻¹ and lower are weak and our SHS may not be sensitive enough to pick them up. Calibration is also not perfectly set.

<u> Measurements – Potassium Perchlorate</u>

- Two significant peaks observed in the Potassium Perchlorate spectrum.
 - In upper plot: around 940 cm^{-1} peak and a peak around 1060 cm^{-1}
- Mentioned previous slide, note that peaks that shift by $800cm^{-1}$ and lower are weak and our SHS may not be sensitive enough to pick them up. Calibration is also not perfectly set. However, looking at the wavelength ~543nm, you can see that there is a peak with slight intensity of about 8.8 au.

Raman spectrum of KCL04:

https://www.researchgate.net/figure/a-The-typical-columnsummed-FT-applied-to-potassium-perchlorate-Raman-withthe_fig4_311627976

Measurements – Potassium Perchlorate

550mg/ml Concentration Exposure Time: 10 seconds

1750mg/ml

Exposure Time: 10 seconds

555

560

565

Wavelength (nm)

570

575

580

585

545

550

George McDonald

<u>Measurements – Sodium Sulfate</u>

Orange line in comparison spectrum is Sodium Sulfate. Our Raman shift is only about 1000 cm^{-1} and above.

Raman spectrum of Sodium Sulfate. Image taken from https://www.researchgate.net/figure/Example-Raman-spectra-of-CaSO-4-and-Na-2-SO-4-Both-show-typical-sulphate-Raman-modes

- Two significant peaks observed in Sodium Sulfate spectrum.
 - In upper plot: around 993 cm^{-1} peak and a doublet around 1102 cm^{-1}
- 993 cm^{-1} shift from 532nm corresponds to ~561 nm. 1102 cm^{-1} and 1132 cm^{-1} corresponds approximately 565 nm and 566 nm.

Julia Smith

Measurements – Sodium Sulfate

Larger concentration 1750mg/ml Exposure Time: 10 seconds

Smaller Concentration 550mg/ml Exposure Time: 10 seconds

Fringes resulting from Ammonium Nitrate

Fourier transform of previous fringes

Reference spectrum: https://www.researchgate.net/figure/Spatialheterodyne-Raman-spectra-of-ammonium-nitrate-a-Focused-25-Imdiameter-laser_fig5_274093887

- Three significant peaks observed in Ammonium nitrate spectrum.
 - In rightmost plot: $1046cm^{-1}$ peak, $1250cm^{-1}$ peak, and a peak shy of $1450cm^{-1}$
- $1046cm^{-1}$ shift from 532nm corresponds to ~561nm. In middle plot, largest peak is at 562.97nm. This is the $1000cm^{-1}$ peak.

$$1045cm^{-1} \cong \left(\frac{1}{532nm} - \frac{1}{561nm}\right)$$

- The doublet at approximately 570nm is present, but for some reason other peak is not present.
- Peak at approximately 590 must be the peak sitting past 1500cm⁻¹. Gratings were tilted further in order to recalibrate; this may be
 part of the reason for the intensity of this peak to be larger.

Measurements – Ammonium Nitrate

1750mg/ml Exposure Time: 10 seconds

550mg/ml Concentration Exposure Time: 10 seconds

George McDonald

10 Measurements for Potassium Perchlorate

		1		
Concentration Level 2		Intensity of 562nm peak with		
Exposure Time (us)	Intensity of 562nm peak	550mg/4ml Sample		
160233	17.3272	180		
251473	36.1045			
663573	72.9026	$] > 120 \qquad 120 \qquad 1 \qquad $		
775381	89.304			
1639053	129.431			
2340773	141.9173	40		
5242008	149.708	20		
7250572	145.3213			
8321082	143.6018	0 500000 1000000 15000000		
1000000	143.502			

Average Intensity: 106.912

<u>10 Measurements for Potassium Perchlorate</u>

Concentration Level 1		
Exposure Time (us)	Intensity of 562nm peak	
160233	18.3717	
251473	42.314	
663573	71.8034	
775381	91.4056	
1639053	132.477	
2340773	142.814	
5242008	158.23	
7250572	156.81	
8321082	152.8786	
1000000	152.425	

Average Intensity = 111.9529

<u>10 Measurements for Potassium</u> <u>Perchlorate</u>

Exposure Time: 10s

Intensity vs. increasing concentration level 160 158 Intensity AU 156 154 152 150 148 1000 500 1500 2000 0 KCL04 concentration (mg/ml)

Exposure Time: 5.24s

Optical Setbacks

Optical problems we ran into:

- **Problem :** 785nm laser was weak to have fringes be detected.
 - Solution : Found a new laser from Ocean Insight because it was strong.
- **Problem :** Gratings were not clean and had defects.
 - Solution : Got new grating for the spectrometer for better results.

- **Problem :** The spectrometer was very sensitive and had to keep re-aligning which led to poor resolution.
 - Solution : Put collars and more stable mounts on the optical breadboard.
- **Problem :** The camera that was bought initially was not efficient enough when we had 785 nm laser.
 - Solution : Used another camera that has a bigger sensing area and is more efficient in visible range.
 Switching lasers from 785nm to 532nm allowed us to operate in a spectral range where the frequency shifted signals could be picked up along with the corresponding fringes.

<u>Design Constraints and</u> <u>Standards – Optical</u>

The biggest constraint was the laser that we are using for this project since it's a class 3 laser.

 $_{\circ}$ The beam is hazardous to the eye and skin.

Another constraint was the chemicals we used while testing are flammable and can be harmful to the skin and eyes if not handled properly.

Used a fume hood and gloves.

Electrical Hardware & Software

P-1 P-1 =

<u>Hardware</u> <u>Block</u> <u>Diagram</u>

Humidity/Temperature Factors

- Performance and accuracy of spectrometer.
- Water sampling
- Overall system ventilation/moisture

input

voltage

range

(Vdc)

10.8~13.2

10.8~13.2

rated

(Vdc)

12

12

• I2C

MODEL

CFM-8025BG-140-396

CFM-8025BG-150-444

• Fan to draw <500mA

Feature	SHT33-DIS-B2.5KS	SHT40-AD1F-R2	HIH6030-021-001
Voltage Rating	2.15-5.5V	1.08-3.3V	2.3-5.5V
Current Drawn	6mA-15mA	3.2mA-5mA	<mark>6.5mA</mark>
Size	2.5mm x 2.5mm	1.5mm x 1.5mm	SOIC-8
Pins	8	4	8
Price	\$9.60	\$3.12	\$12.5
Diff. Description	DFN Package	Small functionality	SOIC-8 Package

input

power¹

max

(W)

3.24

4.20

rated

speed¹

typ

(RPM±10%)

4,000

5,000

airflow²

(CFM)

41.40

51.74

static

pressure³

(inch H₂O)

0.27

0.43

noise⁴

typ

(dBA)

39.6

44.5

input

current¹

max

(A)

0.27

0.35

Juan Restrepo Diaz

PCB Layout & Schematics

- Altium Designer
- Manufacturer Recommendations
- Challenge, Industry

Restrepo Diaz

Power Distribution

- 24V Power Supply
- TI WEBench
- Buck Converters into 12V and 3V3 rails
- Current loop layout per manufacturer specifications

Feature	TPS563300DRLR	LM317MDT-TR	MAX25302BAT D/V+
Voltage Rating	<u>3.8V – 28V</u>	4.2V – 40V	1.7V – 5.5V
Max Current Output	<u>3A</u>	1.5 A	2A
Voltage output	800 mV to 22 V	1.2 V to 37 V	600 mV to 5 V
Size	1.6-mm × 2.1-mm	2.4mm x 6mm	SOIC-8
Pins	8	4	14
Price	<mark>\$1.70</mark>	\$0.90	\$1.94
Reasoning	Buck converter, TI webench simplicity	Outdated component	TDFN package, Does not meet new output requirements

MCU/ Programming

- Spy-by-Wire technology
- Logic gates for signal reinforcing
- MSP430EXP Development Board

Feature	MSP430FR6989	STM32G431C6T6
Voltage Rating	<mark>1.8-3.6V</mark>	1.7-3.6V
GPIO Pins	74	38
Protocols supported	I2C, SPI, UART	12C, SPI, UART, USART, USB
Pins	100	48
Price	<mark>\$11.2</mark>	\$7.1
Reasoning	CCS, familiar with programming. Spy-By-Wire programming through Dev board	STMCubeProg

010

USB Layout

- Differential Pairs
- $\circ\,$ UART to USB connection with PC
- \circ Isolation
- $\circ~\mbox{LEDs}$
- Trace specifications

Juan Restrepo Diaz

Safety Interlocks

Safety interlock on enclosure.

Laser is in operation and enclosure is closed to prevent eye injuries.

Operation cannot be interrupted by user.

Safety lock specifications

	Banner Engineering SI- LS42DMMGF	IDEC HS1L	Omron Automation and Safety TL4019
Max Holding Force(Locked)	1500N	3000N	1200N
Operating Temperature Range	-20C to 70C	-20C to 55C	
Power Consumption	4.4W	<mark>4.8W</mark>	8W
Operating Voltage	110/230VAC or 24VAC/VDC	24VDC	24VAC/24VDC Or 110VAC
Switch Operations per hour.	600	<mark>900</mark>	
Maximum Actuator Speed	0.5m/s	<mark>1m/s</mark>	0.33m/s
Mechanical Life operations	1000000	1000000	1000000
Price	~426\$	~200\$	~552\$

XY Table

Allows usage of well plate

Multiple samples allowed at once for mass data gathering

High resolution allows for accurate laser usage

XY table specifications

XY Table Model	ZABER ASR	PI L-731	MOXY-01-100-100
Controller compatibility.	XMCC With autodetect	None included manufacturer has recommended list	None included or sold by manufacturer
Travel Range	100x120	205x205	100x100
Resolution	0.15625um	lnm	1.25um
Motor type	Stepper (2 phase)	DC Motor	NEMA17 Stepper motor
Max Speed	85mm/s	50m/s-90mms	20mm/s
Price	Order Dependent	Order Dependent	2739\$
Operating Temperature range	OC to 50C	5C to 40C	Unknown

Computer Specifications

- MATLAB and supporting libraries have specifications to be able to run
- Large storage is required to store all the data that will be used to perform calculations.
- RAM is an important aspect to be able to perform the calculations themselves.

	Latte Panda	Dell XPS 13 9315	ASUS ZenBook Q526FA
Processor	Intel Atom x5-Z8350	Intel Core i5-1230U	Intel Core i7-8565U
Number of Cores	4	8	4
Storage Type	HDD	HDD	SSD-HDD Hybrid
Storage Capacity	64 GB	256 GB	1128 GB
RAM	4 GB	8 GB	16 GB
Operating System	Windows 10	Windows 11	Windows 11
System Type	64-bit	64-bit	64-bit

Jouhauc

Graphical User Interface

Setup			0
User Info Spectrum displayed successfully.	Spectrometer Setup Capture Image Integration Time (secs) Get Spectrum Set Get Spectrum Spectrum Peak Spectrum Peak	Laser Setup Turn Emission ON Lock Turn Emission OFF Unlock Edit Laser Unlock	о С
Initialize Motor Motor COM # COM30 Poll Sensor Poll Sensor	Motor Setup Go To Start Current Position Toggle Absolute(microstep X - 10 +	18 16 14 (12 NS) N110 N515 8	0
Temperature :0 °CHumidity :0 %RH		2 0 785 790 795 800 805 8 Wavelengths (n	O 10 815 820 825 m)

The GUI is used to control the system as a whole and allows the user to make the adjustments available to them as they see fit.

- Most of the features in the GUI require user input in order to make it as user friendly as possible.
- Initialization and control of the various components is made through the GUI.
- Motor positioning, laser state, and safety features are controlled through the GUI.

Software Block Diagram

Fourier Transformation

- Camera takes multiple pictures of the fringes.
- The IDS Eye camera communicates with MATLAB in order to convert these images into mathematical matrices.
- A Fourier transform is then applied to the numerical matrix, and a graph is created.
- This graph has peaks at certain wavelengths that describe the chemical makeup of the sample.

Budget

ITEM	QUANTITY	PRICE ESTIMATE
Laser	1	Acquired
Gratings	2	~\$160
Lens	3-4	~\$260
CCD	1	\$700
Motor translation stage	1	\$1495
XY Table with additional components	1	\$5876
Polarized beam splitter	1	\$880
Power Source	1	\$10
Custom PCB	1-2	\$80
Custom Enclosure	1	TBD
Microcontroller	1	\$15
Connectors	3	\$10
Misc. Components	TBD	\$30
TOTAL	N/A	~\$9516

Thanks for listening!

Q&A?