Portable Wide - Illumination Microscope

Group 2 - Andres Parra, David Ponce, Jacob Roth, Xuan Luo

Andres Parra CECS

• Our portable microscope is a battery powered microscope which employs a mobile app to control the stage, the magnification, and the wavelength of light to observe various specimens.

David Ponce CFCS

Motivation and Background

- Collaboration between students specializing in photonics, electrical engineering, and software engineering
- Project objective: Streamlining and enhancing microscopy through automation
- Designing and constructing a portable microscope with a digital interface
- Enabling easy control of the microscope and specimen observation on a display
- Incorporating a wide spectrum illumination range from ultraviolet to infrared for versatile observation
- Designing and constructing a portable microscope with a digital interface Enabling easy control of the microscope and specimen observation on a display Incorporating a wide spectrum illumination range from ultraviolet to infrared for versatile observation Demonstrating the project's impact on improving the field of microscopy and its applications.

David Ponce CFCS

Basic goals

- Display a clear magnified image compared to commercial microscopes in the market.
- Our microscope will be able to change between two magnification levels with motor controls.
- The sample will be illuminated by a designed LED light source with three spectra.
- Our microscope should be able to resolve biological specimens around $100 \,\mu$ m.
- Able to focus the image appropriately for each level of magnification through vertical axis control.
- The microscope will be portable, lightweight, and easily carried having dimensions that do not exceed.
- The system will be powered via rechargeable batteries.
- A camera module controlled by a mobile app will be in place to capture the image displayed by the microscope.
- Images will be transmitted and displayed on a mobile app through the Raspberry pi.
- Axis controls with motors will be achieved through a mobile app.
- Store images using an image processing software app.

Advanced goals & Stretch Goals

Advance Goals

- Images can be stored in a database with labels in real time
- Magnification and image resolution will be improved and balanced
- LED light source will be improved to view specimens in better lighting for all wavelengths (390 940 nm)
- Microscope will be improved to resolve biological samples around 80 μ m.
- Motor system will be improved to make smoother and more accurate movements

Stretch Goals

- The microscope will have an "Educational mode" which will utilize machine learning to differentiate between plant and animal cells, and identify the different structures that make up a cell.
- Microscope will be able to resolve biological samples around 20 μ m.

David Ponce CECS

Xuan Luo

CREOL

Objectives

Objectives

- UV, white, and IR LEDs will be used for LED light source design on PCB (390 980 nm spectrum)
- Small lenses will be used (small, portable, and lightweight)
- Two objective lenses will be used (magnifications of 40x and 100x)
- Image sensor will have high resolution and small pixel size (diffraction limited)
- Doublet lenses will be used (achromatic)
- Wavelength control will be achieved by LED control

Engineering Specifications

	Table 1 - Engineeri	ing Specifications	
Component(s)	Parameter	Specification	Unit(s)
Camera Module	Image resolution	1920 x 1080	Pixels
Image Sensor	Pixel size	1.25 x 1.25	μm
Vertical Focusing motors	Latency	<100	ms
Objective lens motor	Latency	< 2	Seconds
Turntable for objective lens	Turn radius	360	Degrees
Objective Lens 1	Magnification	40x	Unitless
Objective Lens 1	Focal length	4	mm
Objective Lens 2	Magnification	100x	Unitless
Objective Lens 2	Focal length	1.6	mm
Tubular Lens	Focal length	75	mm
White LED	Wavelength	450 - 700	nm
850nm IR LED	Wavelength	850	nm
940nm IR LED	Wavelength	940	nm
UV LED	Wavelength	390 - 395	nm
Batteries	Discharge Time	≥1	Hour

Hardware Design - Block Diagram

Microscope Prototype

Xuan Luo CREOL

Front

Back

PCB protector

Xuan Luo CRFOL

Part Selection

Achromatic objective lens selection:

- Dark-mode: the objective lens only receives light scattered by the sample, not from the light source
- $tan\theta = 11 \text{ mm}/15 \text{ mm} = 0.73, \theta = 36^{\circ}$
- 90-θ = 90 36 = 54°
- NA = sin(54°) = 0.8
- The closest NA of objective lenses on market is 0.65
- Focal length of 40x obj is 4 mm and focal length of 100x obj is 1.6 mm, with a tube length of 160 mm

Tubular lens selection:

- Δr=λ/2NA =390 nm/(2x0.65)=300 nm
- $d = 1.12 \,\mu m$ (see image sensor section)
- optimal sampling: $\Delta r > 5$ pixels
- Δr/5=300 nm/5=60 nm
- magnification = $1.12 \,\mu$ m/60 nm=18.67x
- focal length of the tubular lens = 18.67x4 mm=74.68 mm ~75 mm

- d = 2 mm, separation = (22 mm-4x2 mm)/3 =~ 5 mm
- actual illumination area: $\pi(11\text{mm})^2 = 121\pi$
- Tubular lens area: π (12.7mm) $^2 = 161\pi$
- Illuminating ratio = $121\pi/161\pi = 75\%$

Part Selection (cont.)

Image sensor selection:

"Imaging system performance based upon Fλ/d," G. Holst, Opt. Eng. 46(10), 103204 (2007) "Design considerations for advanced MWIR target acquisition systems," G. Holst, R. Driggers and O. Furxhi, Appl. Opt. 59(14), 4339 (2020)

- diffraction blur is 2.44F λ , F λ = 2d for optimal sampling
- 2.44x2d= 4.88d
- stretch goal is to resolute around 20 μ m
- 4.88d= 20 μ m, d= 4.1 μ m.
- When pixel size is smaller than $4.1 \,\mu$ m, the image sensor can achieve a diffraction-limited performance in imaging system.

Raspberry Pi Camera Module v2:

- pixel size is $1.12 \,\mu\text{m}$
- working wavelength is from 350 nm to 1100 nm

Microscope Design: Two-Lens Imaging System

Parallel incoming light

Two-lens imaging system illustration

Xuan Luo CREOL

Pupil aberration is 0 along x-axis and y-axis

Microscope Design: Resolution

Resolution-wavelength plot

CREOL

Microscope Design: Resolution (cont.)

Image simulation:

- Image A: simulation of a test image with a grid of lines that is 0.001 mm
- Image B: diffraction image obtained by simulating the performance of our imaging system with a letter 'F'
- The central gives a satisfactory imaging result

Microscope Design: Magnification & FOV

Xuan Luo CREOL

Magnification:

for 40x objective:

- objective focal length is 160 mm/40=4 mm
- tubular lens focal length is 75 mm
- overall magnification of the entire imaging system is 75 mm/4 mm=18.5x

for 100x objective:

- objective focal length is 160 mm/100=1.6 mm
- overall magnification is 75 mm/1.6 mm=46.875x ~ 47x

FOV:

- pixel size of the image sensor we are using is $1.12 \,\mu\text{m} \times 1.12 \,\mu\text{m}$. The sensor has $3280(\text{H}) \times 2464(\text{V})$ pixels.
- for 40x objective lens, in the sample plane, one pixel is $1.12 \,\mu$ m/18.5=60.5 nm. Hence, the horizontal field of view is 3280x60.5 nm=198 μ m in the sample plane; the vertical field of view is 2464x60.5 nm=149 μ m in the sample plane.
- for 100x objective lens, one pixel is $1.12 \,\mu$ m/47=24 nm. Thus, the horizontal field of view is 3280x24 nm=79 μ m in the sample plane; the vertical field of view is 2464x24 nm=59 μ m in the sample plane.

Microscope Design: LED Light Source

Relative Weight

Xuan Luo CREOL

LED layout design

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0.38 0.437 0.494 0.551 0.608 0.665 0.722 0.779 0.836 0.893 0.95 Wavelength in Microns

- UV gives a higher resolution
- White light can provide enough brightness
- IR can image the structure of the sample

Illuminating spectrum (illustration)

Microscope Design: Illumination System

CREOL

Method 1: Köhler illumination system

Method 2: Lambertian diffuser illumination system

- LED light is Gaussian-distributed, which results in the central part of the specimen brighter than the edge.
- Illumination system can make the LED light homogenous, so the specimen gets uniform illuminating light.
- We chose method 2 for the entire system to be more compact
- Focal length of condenser is 30 mm

Microscope Design: 2 in 1 Feature

- . Bright Mode:
 - central and outer circles of LEDs: on
 - objective lens captures the LED light
- B. Dark Mode:
 - central circle of LEDs: off
 - outer circle of LEDs: on
 - objective lens only captures light scattered by the sample

Comparison and Selection of Hardware -Image sensor vs. Camera module

-	Image Sensor	Camera Module
Applications	Security cameras, drones, robotics	Security cameras, drones, robotics
Functionality	No on-board pre-processing	On-board pre-processing
Cost	Cheaper	More expensive
Ease of use	Harder to use	Easier to use
Size	Lighter weight	Heavier weight

- On-board pre-processing
- Ease of use

Andres Parra CECS

Jacob Roth ECE

Motor Technology Comparison

-	Servo Motors	Stepper Motors
Applications	Used for robotics, electronic manufacturing, CNC machines	3D-Printers, milling machines, automated machines
Capabilities/Features	Runs smoother than stepper motors	Can use microstepping to overcome misstepping issue
Noise	Quiet at high speeds	Lots of noise at high speed operation
Speed	Can provide 2-3 times the speed of stepper motors while maintaining the same torque	Inversely related to torque. Good for low speed and high torque applications
Torque	Constant torque at low and high speeds	Inversely related to speed. At low speeds, stepper motors provide higher torque compared to servo motors.
Feedback	Speed and positional feedback to monitor position. Misstep correction	No feedback to monitor position. Could result in missteps
Accuracy	High Accuracy. Continuously corrects positional errors using its encoder and use of feedback	Low accuracy. No feedback to monitor positional errors.
Efficiency	High efficiency	Low efficiency

- Stepper motor is more precise
- Good for low speed designs/projects

۰

- Low noise
- Good for high speed designs/projects

Jacob Roth ECE

Stepper Motor

	Table 10 - Stepper Mo	tor Part Comparison	
-	28BYJ-48	42-23 Nema 17	28-28 Nema 11
Size	42 x 30 x 29 mm	42 x 42 x 23mm	28 x 28 x 28 mm
Weight	40 grams	132 grams	80 grams
Rated Voltage	5V	4.1V	3.8V
Step Angle	5.625°	1.8°	1.8°
Torque	Self-positioning torque: 0.0343 N x m	Holding torque: 0.13N x m	Holding torque: 0.065N x m
Cost	\$9.99	\$8.99	\$17.99

Voltage Regulator

	Table 15 - Voltage Regulator Part Comparison			
-	LM2598	TPS54202	TPS563300	TPS564201DDCR
Output voltage Range	3.3V, 5V, 12V - fixed 1.2V to 37V - adjustable	0.6V to 26V	0.8V to 22V	0.76 V to 7 V
Input Voltage Range	Up to 40V	4.5 to 28V	3.8V to 28V	4.5 V to 17 V
Output Current	1A	2A	3A	4A
Switching Frequency	150kHz	500kHz	500kHz	560kHz
Cost	\$3.33	\$1.08	\$0.31	\$0.35

Stepper Motor Driver Comparison

	Table 11 - Stepper Motor Driver Part Comparison		
-	ULN2003	A4988	DRV8825
Features	4 phases, 4 step state	5 step revolutions up	6 step resolutions up
	LEDs	to 1/16-step	to 1/32-step
Rated Voltage or Max	5V to 12V	Maximum voltage	Maximum voltage
voltage		35V	45V
Rated Current or Max Current	500mA	2A	2.5A
Advantages	Simple and ships with	5 selectable step	6 selectable step
	the 28BYJ-48	modes	modes
Disadvantages	Only compatible with	Higher frequency	Susceptible to voltage
	the 28BYJ-48. Max	noise. Less step	spikes due to its use
	current rating and	modes than the	of low-ESR ceramic
	voltage rating are low	DRV8825	capacitors
Cost	\$1.32	\$1.99	\$3.99

Jacob Roth ECE

Voltage Regulator Comparison

1	Table 14 - Voltage Regulator Comparison		
÷	Linear Regulator	Switching Regulator	
Efficiency	Low efficiency due to waste heat. More sensitive to input/output voltage difference	Very high efficiency, and no heat waste. Deliver more on the desired current and voltage	
Noise	Low noise	High noise	
Dropout voltage	Higher dropout voltages	Lower dropout voltages	
Ripple voltage	Lower ripple voltage	Higher ripple voltage	
Cost	Cheap compared to standard switching regulators	More components leads to a higher cost	
Simplicity	Linear regulators can be made with few parts. Less complex	More components than linear regulators. More complex	

Battery Technology Comparison

Tab	ele 12 - Battery Technology Compa	/ Technology Comparison	
-	NiMH	Li-ion	
Self-discharge rate	higher self-discharge rate	Lower self-discharge rate	
Nominal Voltage	1.2 V. Lower than Li-ion	Varies (3.6V to 3.85V). Higher than NiMH	
Cycle Durability	Estimated 180 to 2000	Estimated 400 to 1200	

Comparison and Selection of Software

David Ponce CECS

Database

Sql vs Nosql

• SQL and NoSQL are two types of database management systems with different data storage models, query languages, and scalability.

Query Language

• SQL databases use SQL as the standardized query language, while NoSQL databases use different query languages based on their data models.

Storage model

- SQL databases organize data in tables with a fixed schema, suitable for structured data like lists or tables.
- NoSQL databases offer more flexibility in data storage, making them ideal for handling unstructured data like social media posts.

Comparison and Selection of Software

David Ponce CECS

Stacks

MERN

• MERN is a JavaScript-based stack (MongoDB, Express.js, React, and Node.js) that simplifies full-stack web development, leveraging MongoDB for scalability with unstructured data, React for dynamic UI components, and Express.js for built-in middleware support.

LAMP

• LAMP (Linux, Apache, MySQL, and PHP) is an open-source stack widely used in web development, offering stability, scalability, and strong community support. While Linux provides security, Apache may have performance issues, and managing large codebases or handling substantial data in MySQL can pose challenges.

Django

• Python with Django (Model-View-Template) is a secure and feature-rich framework suitable for large-scale, high-traffic websites. It provides built-in security, an admin panel, and authentication system. While highly scalable and flexible, it may have limited flexibility in some cases and a steep learning curve for new developers. Additionally, Django has limited support for NoSQL databases.

Andres Parra CECS

Development Board Comparison

	Table 16 - Development Board Comparison		
-	Arduino Uno	MSP4306968	Raspberry Pi 4 B
Microcontroller	ATMega328P 8-bit AVR RISC architecture (single core)	16 bit RISC architecture (single core)	Broadcom BCM2711, quad core Cortex-A72 64 bit, ARM v8 architecture (quad-core)
Clock speed	Up to 16-MHz	Up to 16-MHz	1.8-GHz
Memory	2KB SRAM 32KB FRAM	2KB SRAM 128KB FRAM	Up to 8GB SDRAM
Power consumption	Active mode: 6.9mA/MHz Sleep mode: 50µA/MHz	Active mode: 100µA/MHz Standby: 0.4µA/MHz	1280mA at 400% CPU load
Wifi Chip	802.11b/g/n Up to 150Mb/s 2.4GHz (Module sold separately)	802.11b/g/n Up to 150Mb/s 2.4GHz (Module sold separately)	802.11b/g/n Up to 150Mb/s 2.4GHz
Manufacturer	Adafruit Industries	Texas Instruments	Broadcom
Size	68.6x53.4mm	16x16mm	56.5x85.6mm
Price	\$27.60 USD	\$20.00 USD	\$35.00 USD

Schematics - Voltage Regulator

ATMEGA2560 - Power

ULN2003 Stepper Motor Drivers

Hardware Design - Overall Schematics

David Ponce CECS Software Design Database

Database Design

Entity Relationship Diagrams

David Ponce CECS

Software Design **Ecosystem**

Use case

UI Design

David Ponce My Photos CECS

Display with controls

Editing

Login

Edited Photo

Gallery

Overall Software Design

Significant PCB Design

Design Flowchart

Raspberry Pi works alongside the main PCB

Peripheral Control handled by main PCB

Image Processing and network communication handled by Raspberry Pi

Andres Parra CECS

CECS

Significant PCB design

Main PCB

AtMega2560

Minimalist design

I/O pins

LED PCB

Uniform Lighting

Various Lighting Modes

Voltage Regulator

Designed using EasyEDA

Input Voltage range: 7.4V to 13V

Output Voltage: 5.03V

Andres Parra CECS

Image Results:

- 1. Microscope overall performance:
 - Multiple specimens under three spectra
- 2. UV vs. white vs. IR
 - Same specimen under three spectra
- 3. 40x vs. 100x
 - Same specimen under two magnifications
- 4. Bright-mode vs. Dark-mode
 - Same specimen under two modes
- 5. Actual resolution
 - Calculated by measuring a width that is resolvable

Capsocum:

1.

Honeybee foreleg:

Female worm:

Ant under white LED:

Xuan Luo CREOL

Housefly leg under IR LED:

White LED Benefit: gives a clear image of most samples

UV LED Benefit: higher resolution

IR LED Benefit: image the structure of the samples

Administrative

Table 24 - Project Budget/Financing Early Estimate				
Item	Quantity	Per Unit Cost (\$)	Total (\$)	Extra
Objective Lens	2	34	34	2 lenses
Eyepiece Lens	1	70	70	
Flange Nut	ī	0.99	0.99	
Silicone Sealant	1	6.28	6.28	(optional) For setting the lense
Printer Filament	1	19.59	19.59	For use in the 3D printer
ATMEGA2560	1	21	21	
Stepper Motor	2	7.99 - 20.99	7.99 - 20.99	2-piece set
Stepper Motor Driver	1	10.79	10.79	2-Piece set
Batteries for motors	1	20.00	20.00	Set of four
Battery holders	1	10.00	10.00	Set of ten
Camera Module	1	20.00-25.00	20.00-25.00	
Estimated Total		\$220.64	- 238.64	26

done: 🗸

	Hardware	
Microscope		
wieroscope		
	Design	Xuan
	Testing	Xuan
Power		
	Design	Jacob
	Testing	Jacob
LED		
	Design	Jacob/Xuan
	Testing	Jacob/Xuan
Breadboard		
	Design	Jacob
	Testing	Jacob
Motors		
	Design	Jacob
	Testing	Jacob
PCB		
	Design	Jacob/David
3d printed designs		
	Design	Andres

Administrative (cont.) done: 🗸 In progress: 📀

	Software	
Database		
	Design	David
	Testing	David
Phone app Front end		
	Design	David
	Testing	David
Web app Front end		
	Design	David
	Testing	David
OpenCv		
	Design	David
	Testing	David
Motor controls		
	Design	Jacob
LED controls		
	Design	Jacob
Mega 2560 connections to PI4		
	Design	Andres

Hardware		
	Design	Xuan/Andres
	Testing	Xuan/Andres
Power		2
	Design	Jacob
	Testing	Jacob
LED/ Implementation with microscope		
	Design	Jacob/Xuan
	Testing	Jacob/Xuan
Motors//implementatio n with microscope		
	Design	Jacob/Xuan
	Testing	Jacob/Xuan
PCB/ integrations with pi		
	Design	Jacob/David/Andres
Camera module/ implementation with app		
	Testing	Andres/David

Administrative (cont.)

Software		
Database		
	Design	David
	Testing	David
Phone app Front end		
	Design	David/Andres
	Testing	David/Andres
Web app Front end		
	Design	David
	Testing	David
OpenCv/ Implementation with camera module		
	Design	David/Andres
	Testing	David/Andres
Motor controls/With Application		
	Design	Jacob/David
LED controls//With Application		
	Design	Jacob/Xuan/David
Mega 2560 connections to PI4 to Application		
	Design	Andres/David/Jaco

