"Pawsitive" Pet Feeder

Senior Design II – Group 8

•

Isabella Pardo Photonic Science Engineering

Ervin Dupuis Computer Engineering

Jocelyn Ignacia Computer Engineering

Ayush Shashikant Pindoria Computer Engineering

Project Motivation

- 70% of U.S. households (90.5 million homes) own a pet as of 2022.
- With families become increasingly busy with their lifestyle after the COVID-19 pandemic, often pets may get neglected
- Pet Feeders do exist in the market, however:
 - Designed for only 1 pet in mind
 - If owner does have multiple pets, each pet may have different nutritional requirements

Project Goals

Core Goals:

- Having a power supply that allows the system to function properly
- Using optics and photonics to recognize pets with the correct tag to access each individual feeding bay
- System will store approximately two days' worth of food for all 3 pets
- The food dispenser dispenses the user's desired amount per pet feeder
- Having a self-opening & self-closing lid when the pet arrives and leaves the device

Advanced Goals:

- Create LED collar tags to avoid damage while not altering the pets' lifestyle
- Create an application for the user to save the amount of food to dispense at a certain time

Project Objectives

Core Objectives

- Utilizing a wall outlet adapter
- Creating a camera system that recognizes RGB colors from LED collar tags to open an assigned feeding bay
- Utilize the use of 3D printers, and maximize components to drive cost of materials down
- Calculate the amount of food to be dispensed within one rotation and calculate to the correct serving

Advanced Objectives

- Use IPX-4 LEDs
- Use sensors within the system as received data
- Create an Android mobile application for the user to use to set certain times when the pets' food should be dispensed and to dispense the desired amount of food

Specifications and Requirements

Component	Parameter	Design Specification	
Collar Tag	Water Resistance	IPX - 4	
Camera	Color Detection	3 (Red, Green, Blue)	
Camera	Detection Range	< 2 Feet	
Dispenser	Dispensing Time	< 60 Seconds	
Lid	Activation Time	< 30 Seconds	
Pet Food	Accuracy	± 20% of User Inputted Amount	
Android Application	Mobile Use	Set Time And No. Of Cups To Dispense Food	

Engineering Requirements

Component	Parameter	Design Specification
Camera	Color Detection	3
Dispenser	Dispensing Time	< 60 Seconds
Lid	Activation Time	< 30 Seconds
Android Application	Mobile Use	Set Time And No. Of Cups To Dispense Food

••

• • •

Housing

<u>Size of Housing:</u> 24 Inches W x 20 Inches L x 17 Inches H

Main Electrical Components

Microprocessor

Purpose:

- Process image data presented by the pets' collar tags and deliver commands to the microcontroller for motor control.
- Host a Node.js server for the Android Application to receive amount of food to be dispensed at a certain time and call the microcontroller to dispense food.

Raspberry Pi 4:

- Easy to integrate with camera system
- Communicates easily with microcontrollers via USB ports
- Ability to run multiple python files and node server files simultaneously

Model	Raspberry Pi 4	Odroid XU4	Asus Tinker Board		
Price	\$84.00	\$67.00	\$160.00		
Cores	4	8	4		
Clock Speed	1.5 Ghz	825 MHz	1.8 Ghz		
GPIO	40 Pins	30 Pins	40 Pins		
Memory	8 GB	2 GB	2GB		
Chosen Component					

Microcontroller

Purpose:

- Read input string from Raspberry Pi
- Parse the string to either dispense a certain amount of food or open/close the lid.
- Easy to integrate photodiodes to help facilitate the lid stay open for a period of time while the pet is eating.
- One for each feeding bay

Arduino Uno Rev 3:

- Simple communication with Raspberry Pi
- No external oscillator needed

Model	Arduino Uno Rev 3	MSP430 FR6989	MSP430 G2553	
Price	\$28.50 (Previously Obtained)	\$19.99 (Previously Obtained)	\$9.99 (Previously Obtained)	
Clock Speed	16 MHz	32 MHz (With External Oscillator)	24 MHz (With External Oscillator)	
Memory	32 KB	128 KB	16 KB	
Digital I/O	14 Pins	35 Pins	16 Pins	
Analog Inputs	6 Inputs	8 Inputs	8 Inputs	
Chosen Component				

Stepper Motor - Lid

28byj-48

- Rated Voltage: 5V DC
- Number of Phases: 4
- Stride Angle: 5.625°/64
- Pull in torque: 300 gf.cm
- Insulated Power: 600VAC/1mA/1s
- Coil: Unipolar 5 lead coil

Motor Controller Used : ULN2003 DRIVER

Stepper Motor - Dispenser

NEMA17

- Rated Voltage: 12V DC.
- Current: 1.2A at 4V.
- Step Angle: 1.8 deg.
- No. of Phases: 4.
- Motor Length: 1.54 inches.
- 4-wire, 8 inch lead.
- 200 steps per revolution, 1.8 degrees.
- Operating Temperature: -10 to 40 °C.
- Pull in torque: 3.2 kg-cm

Motor Controller Used : A4988

Buck Converter (12V -> 5V)

LM2596

- Input: DC 3V to 40V
- Output: DC 1.5V to 35V

Note: Input voltage must be higher than the output voltage to 1.5V above cannot boost

Color Detection Technology Comparisons

	OV5647 Mini Camera Module	OV5647 Pi Camera Module Ultra-Wide Angle Fisheye Lens
Price	\$8.99 for two	\$28.99
Compatibility	Raspberry Pi	Raspberry Pi
Resolution	1080 p	1080p
Size	0.98 x 0.94 x 0.35 inches	2.09 x 1.65 x 1.57 inches
Port Type	CSI	CSI

Red LED Comparison

•		5 mm Round Top Red LED – Ultra Bright	RL5-8030 (Red LED)	SSL- LX5093ID-5V
	Wavelength (nm)	630	635	635
	Forward voltage (V)	2.1	2.2	5
	Operating Current (mA)	20	20	-
	Viewing angle (degrees)	30	30	60
_	Typical Intensity (mcd)	8000	18000	2000
	Cost	\$0.18	\$1.47	\$0.69

Green LED Comparison

Blue LED Comparison

	APTD1608QBC/D	C503B-BCS-CV0Z0461	Super Bright Blue 5mm LED		
Wavelength (nm)	470	470	465		
Forward voltage (V)	3.3	3.2	3.8		
Operating Current (mA)	20	20	30		
Viewing angle (degrees)	40	30	20		
Typical Intensity (mcd)	250	4800	7000		
ost	\$0.59	\$1.47	\$8.00 for 25		

Lens Comparison

Lens	LA1951	FRP125
Focal length (mm)	1	25
Diameter (Inch)	1	25
Efficient with multiple wavelengths	Yes	No
Cost	\$25.14	\$23.27

LED Safety

Risk Group	Philosophical Basis
Group 0 (Exempt)	No photobiological hazard
Group 1 (Low Risk)	No photobiological hazard under normal behavioral limitations
Group 2 (Moderate Risk)	Does not pose a hazard due to aversion response to bright light or thermal discomfort
Group 3 (High Risk)	Hazardous even for momentary exposure

....

Collars Schematic

•••

Collar Detection Overview

RGB Color Detection Algorithm:

- Capture an image frame from the camera video. Convert frame->BGR->HSV image.
- Apply mask and morphological transformation to remove noise.
- Find the mask contours and calculate the area of the contour.
- If contour area >= designated minimum area, then call the corresponding Arduino to open lid.
- Use threading to call three Arduinos simultaneously in case every color is detected.

RGB Contour Detection:

- Use OpenCV and Numpy library functions to detect colors and draw all contours based on the color (R, G, B)
- Find the contour with the largest area.
- Convert the contour to a bounding rectangle.
- Calculate area of the rectangle.

Color Detection Example

IR Detection Technology Comparisons

Photodiode Comparison

IR LED Comparison

	BPV23FL	S2386-5K	BPW82		SFH 4546- AWBW	Super-Bright 5 mm IR LED
Price (\$)	1.05	12.09	1.04	Price (\$)	0.81	0.75
Spectral Range	870 - 1050 nm	960 nm	950 nm	Viewing angle (degrees)	40	20
Dark Current	2nA	5 pA.	2nA	Wavelength	950 nm	940 nm

IR LED Motion Detection

Food Dispenser

Overall Schematic

Android Application

. Android Application Development Overview

User Profile

- Login and Register options. Verify account via OTP send to user email.
- Input IP address of the pet feeder to establish a connection.
- Change password and Forgot password? Facilities.
- Ability to update profile picture and username.
 - Ability to create at most 3 _____pet profiles.

Pet Profile

- Option to enter the Pet's name.
- Save time for food dispensing using the Hour, Minute, and AM/PM format.
- Select the number of cups to be fed to the pet.

Dispense Action

- Food can only be dispensed after clicking the "Dispense" button on the home page.
- The "Dispense" button sends all three pet profiles to the Raspberry Pi.
- Host a Node.js server on the Raspberry Pi that stores all pet profiles and includes an internal running clock.
- The server checks every second if it's time to dispense food for any pet. If the time matches, the server sends the number of cups to be dispensed to the corresponding Arduino.

Use Case Diagram

....

Entity Relationship Diagram

• • •

Homepage

• •

Administrative Items

. .

Work Distribution

Project Characteristic	Isabella Pardo	Ervin Dupuis	Jocelyn Ignacia	Ayush Pindoria
Collar Tag	Primary		Secondary	
Raspberry Pi software & Camera System				Primary
Android Application				Primary
Arduino Software		Secondary	Primary	Secondary
Enclosure Design	Secondary	Primary	Secondary	
Electrical System Testing / Design	Secondary		Primary	
Administrative Duties	Secondary	Primary		-

Budget and Financing

Total Cost: \$590.54 Optical Component Cost: \$201.76

Cost will be split evenly among all group members

Component	Cost of Item	Quantity	Total
Camera	\$9.62	1	\$9.62
Red LED	\$1.05		\$8.40
Green LED	\$12.81		\$12.81
Blue LED	\$7.13		\$7.13
Frensel Lens	\$32.56	3	\$97.68
Photodiodes		25	
IR LEDs	\$0.92	25	
Batteries			\$50.63
Battery Holders	\$8.01		\$8.01
Switches	\$7.48		\$7.48
Stepper Motor	\$14.59		\$14.59
Stepper Motor	\$14.59		\$14.59
Belker AC/DC			
Supply	\$14.90		\$14.90
Raspberry Pi	\$84.00		\$84.00
3D Printing (First Round)	\$14.50		\$14.50
A4988 Stepper Motor Driver (5 pcs)	\$14.99		\$14.99
LM2596S Power Module (5 pcs)	\$9.19		\$9.19
Nema 17 Stepper Motor (3 pcs)	\$31.02		\$31.02
PVC Sheet	\$100.00		\$70.00
Various Housing Materials			\$30.00
New Camera			\$15.00
USB Extender Cable	\$7.00		\$21.00
Food Storage	\$10.00	3	\$30.00
Lid Supplies	-	-	\$10.00

Design Constraints

Economics and Time -	2 Semester Limit for Research, Development and Construction of Product More expensive up-front, however does save money in the long run due to the ability to feed multiple pets		
Environmental -	Utilizes off the shelf components Product is targeted to last the lifetime of the pet		
Social -	End User is responsible for food entering the product's system Food storage must be refilled in a timely manner.		
Political -	Not relevant towards the project		
Ethical -	Care for animals are priority Product must be safe and tested for use.		
Health and Safety -	Materials that contact food directly must be safe		
Manufacturability	3D printed components must be up to standards for the longevity of the project		
Sustainability -	Using quality motors and materials will produce less waste and repairs.		
Presentation	No pet policy on campus. Used stuffed animals to test and demonstrate engineering specifications		

Related Standards

- United States Food & Drug Administration
 - Store dry pet food [] in a cool and dry place. The temperature should be less than 80° Fahrenheit. Excess heat or moisture may cause the nutrients to break down.
- Animal Welfare Act
 - 7 U.S.C. 2131: Gives the United States Department of Agriculture the authority to make regulations to implement and enforce the law by issuing regulations on the minimum standards of care and treatment for research and testing
- Soldering
 - Follow UCF Guidelines for Soldering Safety

Demonstrated Design Requirements

Component	Parameter	Design Specification	Demo Results Mean	Demo Results Variance
Camera	Color Detection	3	All 3 Detected	
Dispenser	Dispensing Time	< 60 Seconds	49.16 Seconds	0.44 Seconds
Lid	Activation Time	< 30 Seconds	6.10 Seconds	0.65 Seconds
Application	Mobile Use	Set Time And No. Of Cups To Dispense Food	Works as intended	

University Of Central Florida

College of Optics and Photonics College of Engineering and Computer Science

"Pawsitive" Pet Feeder

Senior Design II, Group #08 Final Presentation Professors: Dr. Samuel Richie, Dr. Lei Wei, Dr. Aravinda Kar

