

Object Detection Drone

Final Presentation - Group Three

Sponsor: UCF ECE Department

UCF Senior Design Spring 2023

Introduction

Motivation

Jazmine Roman (EE)

Purpose

- Develop a drone that has object detection and distance detection.
- The drone has full flight capability.
- The process included schematics, construction, simulation, calibration, and flight testing.
- Allowed essential contribution from all three disciplines within the group

Meet the Team

Derek Murdza Computer Engineering	Cannen Carpenter Computer Engineering	Jazmine Roman Electrical Engineering	Kevin Nilsen Photonic Science and Engineering			
1. Flight / Navigation	1. Machine Learning	1. Drone Build	1. PCB Design			
2. Calibrations	2. Embedded Systems	2. Part Management	2. LiDAR Design			
3. RC Tuning	3. Calibrations	3. Calibrations	3. 3D Printing			

Sponsor Information

- This project was sponsored by the University of Central Florida Department of Electrical and Computer Engineering
- Received funding for drone components
- Offered areas for flight testing

Goals and Objectives

- 1. The drone must satisfy all pre-arm and safety checks
- 2. The drone must be able to takeoff, hover, maneuver, and land
- 3. The drone must be able to classify objects
- 4. The drone must be able to detect the distance from an object

Stretch Goal:

1. The drone must be able to fly autonomously

Cannen Carpenter (CpE)

Requirement Specifications

1	The drone should be able to fly in all three axes (X/Y/Z)
2	The system should be able to hover
3	The sensors must measure distance of target objects up to at least 1 meter with a 0.1 m accuracy
4	The machine learning model must classify objects within 5.00m and have a confidence above 85%
5	The drone must be calibrated to pass pre-arm checks for safety purposes
6	The drone should only be flown in open indoor areas

Cannen Carpenter (CpE)

Block Diagrams

Physical and Safety Constraints

- The prototype must weigh less than 10 lbs
- The prototype must utilize an even weight distribution
- The prototype must only operate in a safe area indoors as permitted by UCF
- The prototype must not exceed an overall power usage of 11.1V
- The prototype must utilize propeller fasteners to safely secure to motors

Drone Build and Design

Soldering, Planning, and Designing Component Layouts for Optimal Performance

Major Components Comparison

Jazmine Roman (EE)

Motors	Brushless	-Very durable	- Complex and driven by a specialized circuit	Brushed	-2 leads only + & -	-Not durable
Flight Controller	PixHawk 4	-High performance -Customizable -Stable -User-friendly	-High cost -Complex	Ardupilot	-Open-source -Versatile -Cost-effective	-Constant software updates -Limited documentation
Companion Computer	Single-Board Computer	-High process power -Customizable -Cost-effective	-Power consumer -Large	FPGA Board	-High Performance -Low latency -Power efficient	-High cost -Difficult integration with flight controller systems
Microcontroller	Raspberry Pi Pico	-Low cost -High Performance -Versatile	-Limited memory	ARM Cortex-M series	-Low power consumption -Easy to program	-Limited memory and storage -Low processing power
Quadcopter Frame	X Frame		-Aerodynamic -Lightest frame	H Frame		-Simple to build -Heaviest frame

ReadyToSky RS-2212 Motors

- Brushless for Noise Reduction
- 920kV Capacity
- Black Caps: Clockwise Rotation
- Silver Caps: Counter-Clockwise Rotation
- Connects directly to ESCs
 - Connections insulated with electrical tape to reduce any

small electric magnetic field

PixHawk Module

- Responsible for sending data to Mission Planner and the Single Board Computer (RPi 4B)
- Crucial for flight control and calibration
- Allows user interfacing for adjustments to navigation
- Controls telemetry and GPS data

LiPo Battery

- Powers all drone components
- 11.1V Maximum Output
- 3000 mAh Charging Capacity

ReadyToSky Electronic Speed Controllers

- Handles throttle control based on user input
- Powered by LiPo battery

- Requires calibration to spin motors
- Utilizes a crystal oscillator for highest accuracy
- 16 KHz motor frequency

Navigation Transmitter

- The FlySky FS-i6 remote control is used for all flight tests
- The four main controls include:
 - Throttle (Altitude)
 - Pitch (Forward/Backward Flight)
 - Yaw (Rotation)
 - Roll (Side-to-Side Flight)

Parts

Part Placement Planning

Jazmine Roman (EE)

Power Distribution Board

 Electric Speed Controllers (ESCs) & battery connector soldered onto PDB

Vibration Dampener

Ð

Top Plate

 Raspberry Pi with PiCam installed and mounted onto top plate

Jazmine Roman (EE)

Flight Controller Placement

PCB Placement Planning

Top Plate Installation

Wiring PixHawk

• Buzzer

- Safety switch
- GPS module with I2C connection
- Power module to battery

Jazmine Roman (EE)

High Landing Gear Legs

Jazmine Roman (EE)

Mounting GPS and Camera

• GPS mounted away from PixHawk

• Camera mounted on top of raspberry pi USB ports

Bill of Material

Part	Market Price	Part	Market Price	Part	Market Price		Part	Market Price	Part	Market Price
Frame legs	\$25	PiHawk flight	U U		\$38		Screws and bolts	\$7	Velcro fasteners	\$9
High Landing Gear legs	\$20	controller	\$235	GPS mount	\$9		Power module	\$17	Fireproof case	\$30
Propellers	\$23	Raspberry Pi4	\$235	Pinspice wires	\$10		Radio Telemetry	\$84	RC controller	\$53
w/fastener		Picam	\$10	AC/DC 12V	\$12			\$5	Pico	\$22
Propeller guards	\$20	4G TF Memory	\$12	adapter battery charger			Zip ties		microcontroller	
Electric speed	\$40	Card w/wires		5 LiPro Balance Charger	\$32		Sticky fasteners	\$19	IR PCB board	TBD
controller		16G VHS-1 w/reader	\$35				USB to Type C	\$8	board	TBD
board	\$52			Power 3000mAh Lipo3S 11.1V 50C	\$40	\$40	USB to Micro Connector	\$8		
		Brushless motors	\$62							\$1,116
	\$16	Vibration damper	ibration damper \$8 XT60 Protect	\$8	AA battery pack		\$15	Total with kit	<mark>\$849</mark>	

Navigation and Calibration

Utilizing Essential Firmware and Calibration to Achieve Successful Flight

General Flight Flowchart Flight GPS and Compass Accelerometer Pre-Arm Checks Calibration Initialization Remote Control Firmware Motor Testing Initial Frame Tuning Installation Calibration Flight Mode Setup ESC Tuning

Mission Planner

- Mission Planner is the flight controller used to monitor all flight data
- The primary functions include:

- Drone Calibration
- Pre-Arm Checks
- Flight and GPS Data
- Motor Function and Direction Testing

Drone Calibrations

- Essential Calibrations include:
 - 1. Accelerometer
 - 2. GPS Fixation
 - 3. Compass
 - 4. Radior
 - 5. ESC

6. Motor Test

GPS Calibration

- Performed outside to ensure satellites connection
- Crucial for satisfying pre-arm checks

Ready for RC flight!

• Performed indoors for safety of others and the robot

Potential for Autonomous Flight

• Determined as a stretch goal

- Python scripts were tested using the Gazebo flight simulator and PX4 Autopilot
 - Functions Tested:
 - Takeoff and Landing
 - Directional Maneuvering
- This prototype has great potential to be fully-autonomous with more training

Cannen Carpenter (CpE)

Object Recognition

Implementing Machine Learning to Detect and Predict Objects Mid-Flight

Cannen Carpenter (CpE)

frame-35.png

frame-45.png

frame-321.png

frame-210.png

frame-220.png

frame-124.png

frame-146.png

frame-29.png

- Developed dataset using Roboflow's platform
- Recorded video of objects, each frame was selected as an image for our dataset
- Dataset is comprised of 550+ manually annotated images
 - Augmented to produce 700+ more Ο annotated images

frame-171.png

frame-133.png

frame-284.png

38

frame-116.png

frame-318.png

frame-456.png

frame-31.png

frame-247.png

frame-213.png

frame-437.png

frame-340.png

frame-182.png

Cannen Carpenter (CpE)

Model Training

- Custom Dataset
 - 1200+ custom annotated images
- YOLOv8 model
 - Implementation is done with PyTorch, rather than Darknet
- Training Specs:
 - Image Size: 800x800
 - # of Epochs: 25
- Last few epochs and overall results shown in the figure on the right

Epoch	GPU_mem	box_loss	cls_loss	dfl_loss	Instances	Size		
23/25	7.2G	0.1643	0.1687	0.8115		800:	100% 64/64	[00:28<00:00, 2.24it/s]
	Class	Images	Instances	Box(P	R	mAP50	mAP50-95):	100% 5/5 [00:02<00:00, 1.76it/s]
	all	150	159	0.992	0.996	0.993	0.979	
	Coqui	150	30	0.999		0.995	0.993	
Rey	the Shark	150	75	0.998	0.987	0.991	0.974	
Wat	er Bottle	150	54	0.979	1	0.992	0.971	
Epoch	GPU_mem	box_loss	cls_loss	dfl_loss	Instances	Size		
24/25	7.2G	0.1498	0.1505	0.8052		800:	100% 64/64	[00:28<00:00, 2.28it/s]
	Class	Images	Instances	Box(P	R	mAP50	mAP50-95):	100% 5/5 [00:03<00:00, 1.33it/s]
	all	150	159	0.991	0.996	0.99	0.973	
	Coqui	150	30	1	1	0.995	0.993	
Rey	the Shark	150	75	0.996	0.987	0.991	0.979	
Wat	er Bottle	150	54	0.975		0.985	0.947	
Epoch	GPU_mem	box_loss	cls_loss	dfl_loss	Instances	Size		
25/25	7.2G	0.1353	0.139	0.7977	8	800:	100% 64/64	[00:28<00:00, 2.24it/s]
	Class	Images	Instances	BOX(P	R	mAP50	mAP50-95):	100% 5/5 [00:06<00:00, 1.24s/it]
	all	150	159	0.992	0.996	0.992	0.983	
	Coqui	150	30	0.999	1	0.995	0.993	
Rey the Shark		150	75	0.998	0.987	0.991	0.978	
Wat	er Bottle	150	54	0.978	1	0.989	0.977	

25 epochs completed in 0.308 hours.

optimizer stripped from runs/detect/train/weights/last.pt, 22.5MB optimizer stripped from runs/detect/train/weights/best.pt, 22.5MB

Validating	runs/det	tect/tra	in/weight	s/best	t.pt				
ultralutic	VOI OUP	a 20 0	Buthon :	0 16	torch	2 0	A+CU110	CIDA+0	114

Ultralytics YOLOV8.0.20 🥖 Python-3.9.16 torch-2.0.0+cu118 CUDA:0 (Tesla T4, 15102MiB)

Model summary (fused): 168 layers, 11126745 parameters, 0 gradients, 28.4 GFLOPs

Class	Images	Instances	BOX(P	R	mAP50	mAP50-95):	100% 5/5	[00:06<00:00,	1.22s/it
all	150	159	0.992	0.996	0.992	0.983			
Coqui	150	30	0.999		0.995	0.993			
Rey the Shark	150	75	0.998	0.987	0.991	0.978			
Water Bottle	150	54	0.978	1	0.99	0.977			

Model Deployment

- Roboflow Raspberry Pi Docker
 - Used to install the Roboflow inference server for deploying our model
- Roboflow inference server
 - Ability to download our trained model and make inferences
- Installed packages using MiniConda & PIP
 - Roboflow, OpenCV, and PyDrive
- Model performance standards:
 - Confidence in correct detection of at least 85%
 - Differentiate between objects consistently

Cannen Carpenter (CpE)

ぐ PyTorch
ぐ ONDA®
ぐ python™

Scripting

- Central processing unit for our drone is our Raspberry Pi 4B
 - \circ $\,$ $\,$ Powered through our battery, which then transmits power to our PCB $\,$
- Flashed with the latest version of Ubuntu, 22.10, using the Raspberry Pi Imager
 - Done to utilize software packages that help deploy our model onto the Pi
- Scripts are created in Python, and activated through the Ubuntu terminal on startup
 - Can end recording session through wireless keyboard interrupt
- Our scripts hold a few purposes:
 - Video Recording
 - Inferencing
 - Receives Sensor Data
 - Uploads results to our Google Drive
- Created two versions, one without LiDAR integration, and one with LiDAR integration
 - Used to reduce computing power

Object Detection Results

Cannen Carpenter (CpE)

- Our selection of objects were all somewhat difficult for different reasons
 - Reflectivity of the metal water bottle and shape
 - Size and shape inconsistency of the shark plushie
 - Shape of the frog plushie
- Water Bottle ended with the highest average confidence, with Rey giving the most trouble
 - Successful in managing a confidence average of over 85%

Distance Detection

Implementing LiDAR to Detect Objects and Record Distance Mid-Flight

Sensor Comparison

Method	Pros	Cons	Comments	
Proximity Sensors	CheapScalable	Short rangeImpreciseNoise sensitive	Simple and easy to implement. Multiple sensors can be used	
Distance Detection	More accurate	Short rangeMore complex	Likely provides little benefit over object detection	
2D Light Detection and Ranging (LIDAR) Scanning	 Accurate Long Range 	 Inaccurate for very short distances Complex driving circuitry 	Worth exploring due to far more accurate environment data	

Infrared Detection Methods

- LiDAR **Range is 1 meter** (3 ft), with an accuracy within 8 centimeters
- Wavelength at 940 nm for LiDAR and 980 nm for proximity sensors
- LiDAR struggles with objects less than 30 cm away
- Four sets of IR proximity sensors using LEDs are also situated around the drone

PCB - Distance Sensing

Time of Flight Circuit

Kevin Nilsen (PSE)

Based on S. Lineykin et. al. (2019)

Notes on LiDAR

- The LiDAR and proximity sensors were originally made to assist with an autonomous navigation system, but that ended up being cut from the final prototype
 - So, the design needs to adapt
- Scanner has the capability for full two dimensional mapping, there is an option to disconnect the motor and have the scanner point only in the direction the camera is facing
 - \circ ~ Lets us only run the object detection program when the scanner senses an object
 - Dramatically reduces computing power
- In any future work, this system could be used in order to avoid environmental objects so the drone does not fly into anything

Future Improvements to LiDAR

- This system has some limitations in its accuracy and range
- Max range can be improved

- Higher quality sensors
- More powerful lasers
- In this particular system, the main limitation was the fact that the power of the laser was quite low in order to keep the cost down and to improve safety.
 - Perhaps in a future system, the laser could be changed, and a higher quality sensor could be used
- Additionally, a method exists to use two photodiodes and a beam splitter
 - This lets us compare the laser output to the received signal directly. Giving us a close comparison
 - More costly and bulky

Jazmine Roman (EE)

Final Design

Derek Murdza (CpE)

Conclusion and Acknowledgements

- This project allowed us to intertwine skills and knowledge gained from multiple disciplines to create a fully-functional drone and has been a very rewarding experience overall
- We are proud of the work that has been put into this project even with setbacks and challenges where we were able to find solutions to solve all problems that appeared
- We would like to acknowledge the following:
 - UCF Department of Electrical and Computer Engineering
 - Dr. Lei Wei
 - Dr. Samuel Richie
 - Dr. Aravinda Kar
 - Review Committee

Thank You!