

Object Detection Drone

Final Presentation - Group Three

Sponsor: UCF ECE Department

UCF Senior Design Spring 2023

Introduction

Motivation

-0

Jazmine Roman (EE)

Purpose

- Develop a drone that has object detection and distance detection.
- The drone has full flight capability.
- The process included schematics, construction, simulation, calibration, and flight testing.
- Allowed essential contribution from all three disciplines within the group

Meet the Team

Sponsor Information

 \blacktriangleleft

- This project was sponsored by the **University of Central Florida Department of Electrical and Computer Engineering**
- Received funding for drone components
- Offered areas for flight testing

Goals and Objectives

- 1. The drone must satisfy all pre-arm and safety checks
- 2. The drone must be able to takeoff, hover, maneuver, and land
- 3. The drone must be able to classify objects
- 4. The drone must be able to detect the distance from an object

Stretch Goal:

 \blacksquare

1. The drone must be able to fly autonomously

Requirement Specifications

 \blacktriangleleft

Block Diagrams

and the control of the control of

 \blacktriangleleft

Physical and Safety Constraints

The prototype must weigh less than 10 lbs

 \blacksquare

- The prototype must utilize an even weight distribution
- The prototype must only operate in a safe area indoors as permitted by UCF
- The prototype must not exceed an overall power usage of 11.1V
- The prototype must utilize propeller fasteners to safely secure to motors

Drone Build and Design

 \blacktriangleleft

Soldering, Planning, and Designing Component Layouts for Optimal Performance

 \Rightarrow

Major Components Comparison

Jazmine Roman (EE)

ReadyToSky RS-2212 Motors

- **Brushless for Noise Reduction**
- 920kV Capacity

 \blacktriangleleft

- Black Caps: Clockwise Rotation
- Silver Caps: Counter-Clockwise Rotation
- Connects directly to ESCs
	- Connections insulated with electrical tape to reduce any

small electric magnetic field

PixHawk Module

 \blacktriangleleft

- Responsible for sending data to Mission Planner and the Single Board Computer (RPi 4B)
- Crucial for flight control and calibration
- Allows user interfacing for adjustments to navigation
- Controls telemetry and GPS data

LiPo Battery

 \blacktriangleleft

- Powers all drone components
- 11.1V Maximum Output
- 3000 mAh Charging Capacity

ReadyToSky Electronic Speed Controllers

- Handles throttle control based on user input
- Powered by LiPo battery

 \blacksquare

- Requires calibration to spin motors
- Utilizes a crystal oscillator for highest accuracy
- 16 KHz motor frequency

Navigation Transmitter

- The FlySky FS-i6 remote control is used for all flight tests
- The four main controls include:

 \blacktriangleleft

- Throttle (Altitude)
- Pitch (Forward/Backward Flight)
- Yaw (Rotation)
- Roll (Side-to-Side Flight)

Parts

Part Placement Planning

 \blacktriangleleft

Jazmine Roman (EE)

Power Distribution Board

Electric Speed Controllers (ESCs) & battery connector soldered onto PDB

Vibration Dampener

■り

Top Plate

● Raspberry Pi with PiCam installed and mounted onto top plate

-(1)

Jazmine Roman (EE)

Flight Controller Placement

PCB Placement Planning

Top Plate Installation

 \blacklozenge

Wiring PixHawk

- **Buzzer**
- Safety switch
- GPS module with I2C connection
- Power module to battery

High Landing Gear Legs

Mounting GPS and Camera

• GPS mounted away from PixHawk

● Camera mounted on top of raspberry pi USB ports

Bill of Material

and the company of the

Navigation and Calibration

Utilizing Essential Firmware and Calibration to Achieve Successful Flight

30

Flight GPS and Compass Accelerometer Pre-Arm Checks Calibration Initialization Remote Control Firmware Motor Testing Initial Frame Tuning Calibration Installation Flight Mode Setup **ESC Tuning**

General Flight Flowchart

 \blacktriangleleft

and the control of

Mission Planner

- Mission Planner is the flight controller used to monitor all flight data
- The primary functions include:

 \blacktriangleleft

- Drone Calibration
- Pre-Arm Checks
- Flight and GPS Data
- Motor Function and Direction **Testing**

Drone Calibrations

- Essential Calibrations include:
	- 1. Accelerometer
	- 2. GPS Fixation
	- 3. Compass
	- 4. Radior
	- 5. ESC

 \blacktriangleleft

6. Motor Test

GPS Calibration

 \blacktriangleleft

- Performed outside to ensure satellites connection
- Crucial for satisfying pre-arm checks

Ready for RC flight!

● Performed indoors for safety of others and the robot

Potential for Autonomous Flight

Determined as a stretch goal

 \blacksquare

- Python scripts were tested using the Gazebo flight simulator and PX4 Autopilot
	- Functions Tested:
		- Takeoff and Landing
		- Directional Maneuvering
- This prototype has great potential to be fully-autonomous with more training

Object Recognition

4)

Implementing Machine Learning to Detect and Predict Objects Mid-Flight

frame-35.png

frame-312.png

frame-210.png

frame-220.png

frame-124.png frame-146.png

- Developed dataset using Roboflow's platform
- Recorded video of objects, each frame was selected as an image for our dataset
- Dataset is comprised of 550+ manually annotated images
	- Augmented to produce 700+ more annotated images

frame-171.png

frame-133.png

frame-116.png

frame-456.png

frame-31.png

frame-318.png

frame-213.png

frame-437.png

frame-340.png

frame-283.png

frame-33.png

frame-321.png

frame-29.png

Model Training

- **Custom Dataset**
	- 1200+ custom annotated images
- YOLOv8 model
	- Implementation is done with PyTorch, rather than Darknet
- **Training Specs:**
	- Image Size: 800x800
	- # of Epochs: 25
- Last few epochs and overall results shown in the figure on the right

25 epochs completed in 0.308 hours.

Optimizer stripped from runs/detect/train/weights/last.pt, 22.5MB Optimizer stripped from runs/detect/train/weights/best.pt, 22.5MB

Ultralytics YOLOv8.0.20 / Python-3.9.16 torch-2.0.0+cu118 CUDA:0 (Tesla T4, 15102MiB)

Model summary (fused): 168 layers, 11126745 parameters, 0 gradients, 28.4 GFLOPs

Model Deployment \blacksquare

- Roboflow Raspberry Pi Docker
	- Used to install the Roboflow inference server for deploying our model
- Roboflow inference server
	- Ability to download our trained model and make inferences
- Installed packages using MiniConda & PIP
	- Roboflow, OpenCV, and PyDrive
- Model performance standards:
	- Confidence in correct detection of at least 85%
	- Differentiate between objects consistently

Cannen Carpenter (CpE)

G PyTorch CONDA \rightarrow python

Scripting

- Central processing unit for our drone is our Raspberry Pi 4B
	- Powered through our battery, which then transmits power to our PCB
- Flashed with the latest version of Ubuntu, 22.10, using the Raspberry Pi Imager
	- Done to utilize software packages that help deploy our model onto the Pi
- Scripts are created in Python, and activated through the Ubuntu terminal on startup
	- Can end recording session through wireless keyboard interrupt
- Our scripts hold a few purposes:
	- Video Recording
	- Inferencing
	- Receives Sensor Data
	- Uploads results to our Google Drive
- Created two versions, one without LiDAR integration, and one with LiDAR integration
	- Used to reduce computing power

Object Detection Results

Cannen Carpenter (CpE)

- Our selection of objects were all somewhat difficult for different reasons
	- Reflectivity of the metal water bottle and shape
	- Size and shape inconsistency of the shark plushie
	- Shape of the frog plushie
- Water Bottle ended with the highest average confidence, with Rey giving the most trouble
	- Successful in managing a confidence average of over 85%

Kevin Nilsen (PSE)

Distance Detection

 \blacktriangleleft

Implementing LiDAR to Detect Objects and Record Distance Mid-Flight

Kevin Nilsen (PSE)

Sensor Comparison

 \blacklozenge

Infrared Detection Methods

- **LiDAR Range is 1 meter** (3 ft), with an accuracy within 8 centimeters
- Wavelength at 940 nm for LiDAR and 980 nm for proximity sensors
- LiDAR struggles with objects less than 30 cm away
- Four sets of IR proximity sensors using LEDs are also situated around the drone

45

Kevin Nilsen (PSE)

$\sqrt{200}$ $\sqrt{200}$ Proximity Time of flight sensor analysis 0000000

n n n i

0000000

 0000000 10000000

control

4)

Modulator

PCB - Distance Sensing

Time of Flight Circuit

 \blacktriangleleft

Kevin Nilsen (PSE)

Based on S. Lineykin et. al. (2019)

Kevin Nilsen (PSE)

Notes on LiDAR

ED

- The LiDAR and proximity sensors were originally made to assist with an autonomous navigation system, but that ended up being cut from the final prototype
	- So, the design needs to adapt
- Scanner has the capability for full two dimensional mapping, there is an option to disconnect the motor and have the scanner point only in the direction the camera is facing
	- Lets us only run the object detection program when the scanner senses an object
	- Dramatically reduces computing power
- In any future work, this system could be used in order to avoid environmental objects so the drone does not fly into anything

Kevin Nilsen (PSE)

Future Improvements to LiDAR

- This system has some limitations in its accuracy and range
- Max range can be improved

 \blacksquare

- Higher quality sensors
- More powerful lasers
- In this particular system, the main limitation was the fact that the power of the laser was quite low in order to keep the cost down and to improve safety.
	- Perhaps in a future system, the laser could be changed, and a higher quality sensor could be used
- Additionally, a method exists to use two photodiodes and a beam splitter
	- \circ This lets us compare the laser output to the received signal directly. Giving us a close comparison
	- More costly and bulky

Final Design Jazmine Roman (EE)

 \blacklozenge

Conclusion and Acknowledgements

- This project allowed us to intertwine skills and knowledge gained from multiple disciplines to create a fully-functional drone and has been a very rewarding experience overall
- We are proud of the work that has been put into this project even with setbacks and challenges where we were able to find solutions to solve all problems that appeared
- We would like to acknowledge the following:
	- UCF Department of Electrical and Computer Engineering
	- Dr. Lei Wei

 \blacksquare

- Dr. Samuel Richie
- Dr. Aravinda Kar
- Review Committee

Thank You!

 \blacktriangleleft