Single Mode Autonomous Solar Spectrometry

Kara Semmen Photonic Science Engineer

Tamara Nelson Photonic Science Engineer

Jarolin Jimenez Vasquez Electrical Engineer

Miguel Daboin Electrical Engineer

Misael Salazar Computer Engineer

Motivation/Background

Studying the sun's radial velocity as it rotates and wobbles around the solar system's center of mass is important in space exploration.

Utilizing the Doppler effect, researchers can examine the Sun's spectrum for redshift

Solar flares and storms result in unpredictability in measurements

Constant monitoring throughout the day can account for this

Our Project

- Requested based off a mini telescope designed by the Astrophotonics research group that collects light from the Sun
- Utilizes spectrometry to collect raw images of the Sun's spectrum
 - Not just a product, but rather a steppingstone in the development of advanced study of the Sun

Overview: Two System Project

Autonomous Rooftop Observatory

- Houses components that enable the system to track the sun
- Weather protected

2. Optical Lab Processing

- Single Mode Spectrometer
- Fabry-Perot Etalon

Note: The electronics in the rooftop system are not meant to connect directly to the optical lab, but rather enable the weather resistance and monitoring requested by the sponsor. The connection is from a component the observatory houses: a mini telescope to capture light from the Sun

Overall Design

 Here is a diagram depicting the overall plan of the system, depicting how the optical, electrical, and software systems connect. Which also depicts with highlighted colors the work distribution among the team.

Goals and Objectives

Goals		Objectives
Basic	Tracking of the sun	
	Weather protection of rooftop system	
	Spectrometer to output spectrum of sun	Implement a single mode fiber from telescope to spectrometer
	Spectrometer calibration	Filter broadband, continuum light source through a Fabry-Perot etalon as a parallel spectrometer input to create a comb-like pattern for comparison
Advance	Improve Optical stability	Implement a thermostable mounting design for the Etalon
		Implement fiberglass mounting to minimize vibration
		Add enclosure with insulation and foam for sound absorption
		Incorporate cross-dispersion in spectrometer to
Stretch	Implement a second telescope and fiber connection	TBD

Engineering Specifications

Description	Specifications
Spectrograph Resolution Element	6e9 Hz
Free Spectral Range of Etalon	18 – 30 GHz
Start-up Time	~1 minute
Weather Resistance	IP66 equivalent
Weather Model Accuracy	> 50%
Power Consumption	<mark>< 100W</mark>
Solar Imager: Image Interval	10 seconds

Optics: Spectrometer

Design

- Two-dimensional dispersion.
- Light is dispersed twice as it passes through the system. First by the grating and then by the prism

- First dispersion will result in a vertical line with a small range of spectrum varying by vertical distance from the center.
- Second dispersion will spread out the overlapping lines to show a large bandwidth of color.

3.5x magnification

Overall Spectrometer Specs

Resolving power between 50,000 and 100,000

Bandwidth of 400 nm to 700 nm

Optics: Spectrometer Single Mode Fiber (SMF) Comparison and Selection

Fiber	Operating wavelengt h	Coating Diameter	Coating Material	Operating temperat ure (degrees Celsius)	Attenuatio n	Mode Field Diamet er (MFD)	Numerical Aperture
Thorlabs SM400	405-532 nm	245 ± 15 μm	Dual Acrylate	-55 to 85 °C	≤50 dB/km @ 430 nm ≤30 dB/km @ 532 nm	2.4-3.5 μm	0.12-0.14
Newport: F-SAOptical	488-633 nm	245 µm	Dual Acrylate	Not Given	50 dB/km @ 488 nm	2.8-4.1 μm	0.1-0.14
Thorlabs SM600	633-780 nm	245 ± 15 μm	Dual Acrylate	-55 to 85 °C	≤15 dB/km	3.6 – 5.3 μm	0.1-0.14

Optics: Spectrometer SMF Selection

Thorlabs SMF 400

- Chosen for smallest fiber core size (mode field diameter in table), to achieve high resolution.
- Also chosen for bandwidth.
 Designed for 532 nm, which is the peak wavelength we seek to measure in this system.
- Peak wavelength transmittance of 400-532 nm, MFD of 3µm, designed to operate at temperatures ranging from -55 to 85 degrees Celsius.

Optical Grating Specs

- Must be made for the visible to near infrared wavelength range (400 to 900 nm)
- Must have a pitch which allows for high resolving power (50,000 to 100,000)
- Bandwidth must fit on detector (roughly 35 mm across).
- Size must be large enough for incident beam to fit on grating
- The desire for large bandwidth with significantly high resolution leads us to solely compare echelle gratings whose blazed grooves are designed to maximize intensity of the higher diffraction orders (higher diffraction order provides greater spectral resolution).

Optics: Spectrometer Grating Comparison and Selection

Grating	Groove density	Dimensions	Blaze angle	Price
Echelle ruled reflective grating	31.6 grooves/mm	50x25 mm	63.9 degrees	\$284
Echelle ruled reflective grating	79 grooves/mm	50x25 mm	63 degrees	\$284
Echelle ruled reflective grating	79 grooves/mm	50x25 mm	74 degrees	\$284
Echelle ruled reflective grating	316 grooves/mm	50x25 mm	63 degrees	\$284

• Higher blaze angles result in a spectrum too large for detector

•63.9 degree blaze angle sacrifices some resolving power but produces higher diffraction efficiency

•Reflective grating allows for a more compact design than a transmission grating.

Collimating and Camera Optics Specs

- The ratio of the camera lens focal length to the collimator focal length must be equal to the desired magnification, 3.5x
- Collimating lens: focal length of 87 mm
- Camera lens: focal length of 305 mm
- Size of lens must be large enough to capture beam.
- Lenses must have an antireflective coating
- Lenses must be achromatic to diminish chromatic aberrations
- Must be cost and time effective

Criteria used to check system functionality:

- Arclamps with known
 wavelengths used to measure the actual bandwidth and magnification of the system
- Resolution calculated utilizing the equation, $R=\lambda/\Delta\lambda$

Lens Comparison

- A single lens for either the collimating or camera lens produces too many aberrations to be a viable choice for this system.
- The alternatives are to:
 - Design and assemble a custom optical design with multiple lenses for both the collimator and camera optics in the system
 - Expensive
 - Lead time for custom made lenses adds time to project timeline
 - Guaranteed to obtain the exact lenses needed
 - Acquire a lens system already designed for minimal aberrations with the necessary focal length and F/#.
 - Affordable
 - Possible conflicts with available lens systems on the market
 - No custom optical design needed.

Lens Selection

- EF 75-300mm F/4-5.6 Cannon Lens
- Adjustable focus: the same lens can be utilized for both collimating and focusing components
- Minimized aberrations
- Cost: \$300

Long term Optical Design:

• For the project that will evolve from this initial spectrometer, a large custom setup for the camera and collimator optics is feasible. The initial design of a custom optical system was done by this group for future implementation by the research group.

Prism

- Prism added to system to design a cross-dispersive spectrometer
- This will disperse overlapping orders to increase bandwidth range of device.
- No prism comparison necessary
- Edmund Optics equilateral prism used for this design
- F2 glass

Detector Specs

- The research group that funded this project already had a suitable detector in inventory. This saves money for the research group.
- Must detect light in the visible to near infrared wavelength range
- High Quantum efficiency
- Low read noise

Detector	Pixel size	Detecto r size	Read noise	Frame rate	Price
ATIK APX60 CMOS detector	3.76 μm	36 mm x 24 mm	1.2 e-	2 fps	Already in inventory: Won't add any additional cost.

Mounting and Alignment

- The greatest challenge when building the spectrometer is the alignment of the system.
- Two-part dispersion and single mode fiber increases the sensitivity to alignment errors.
- Light cannot be traced through system with the bare eye
- Alignment performed with Zemax and Solidworks.
- Aluminum plate and lens mounts designed using modeling software.

Fabry-Perot Etalon: Technology Comparison and Selection

	Frequency Comb	Hollow Cathode Lamp	Broadband Fabry-Perot Etalon
Precision and Stability	< 5 cm/s	< 1 m/s	Dispersion shifts
	Potential for atomic clock stabilization		Sensitive to temperature and environment
Price, Availability, and Development	Expensive	Relatively Inexpensive	Inexpensive
		Readily available	Easier development to match most spectrograph specifications since the FSR is a function of the cavity width
Spectral Range	Visible-Infrared	Visible-Infrared	Visible
Spectral Lines	Densely packed (spectrographs resolving power not high enough)	Narrow lines Limited number of reference lines Irregular line distribution	Dense grid with uniform intensity over entire spectral range
	More narrow wavelength coverage than spectrograph	Undesirable spectral features from impurities Blending	

Fabry-Perot Etalon Criteria

Free Spectral Range (FSR):

 Chosen to provide the maximum spectral calibration information (commonly 3-5x the resolution element of the spectrograph)

Linewidth

Linewidth:

• Narrower than the etalon's FSR to prevent line blending

$$<\frac{\Delta v_{res}}{10}$$
 to $\frac{\Delta v_{res}}{2}$ $< 0.6-3$ GHz

Finesse:

- Ratio of *FSR/Linewidth*
- Requested > 25-50

FSR

Fabry-Perot Etalon: Part Comparison and Selection

- Mirrors: Back Polished Surface, Front surface partially reflective
 - Zerodur low thermal expansion

	Identifier	Reflectance	Cavity Length (mm)	FSR (GHz)	FWHM (GHz)	Finesse	Notes
Thorlabs	<u>BB1-E02P</u>	99% @ 400- 750 nm	6	25	0.0792	315.738	Good range, FSR = goal Finesse >> goal, FWHM << goal,
	<u>PF10-03-</u> <u>P01P</u>	97% @ 450 nm – 2 μ	6	25	0.235	106	Slightly limited visible range, FWHM< goal Finesse>goal
*Edmund Optics	<u>24-029</u>	98%-99% @400 - 750 nm	6	30	0.19- 0.0792	158- 315.738	Middle ground between the Thorlabs options, Zerodur

Fabry-Perot Etalon: Part Comparison and Selection

Broadband Source Selection: 4900 K, 740 mW Mounted LED

Fabry-Perot Etalon Design

	FSR (GHz)	FWHM (GHz)	Finesse	Reflectance	Cavity Length (mm)	Wavelength Range (nm)	5
Criteria Ranges	18 - 30	< 0.6 - 3	>25-50	86%-95%	5 – 8	400 - 700	1
Calculated Ranges	18.75 - 30	0.12 - 0.19	160- 315	98%-99%	5 – 8	400 – 750	

Fabry-Perot Etalon: Stability Challenges

- The greatest challenge in the design and fabrication was the etalon cavity's high sensitivity to the environment.
- Given the time and resources, several solutions were considered

Fabry-Perot Etalon: Mounting Designs

Linear Thermal Expansion:

 $\Delta L = \alpha L_0 \Delta T$

Material	Coefficient of Thermal Expansion, α ($ppm/^{\circ}$ C)
Super Invar	• 0.72×10^{-6}
Invar	1.6×10^{-6}
Steel Alloy	12×10^{-6}
Aluminum	23×10^{-6}

With thermostable design $\Delta L = 0.0043 \text{ mm}$

Without thermostable design $\Delta L = 0.0124 \text{ mm}$

Fabry-Perot Etalon: Mounting Designs

- Hollow triangular mounts on each side
- G10 Fiberglass Board
 - CTE: $2 \times 10^{-5} ppm/^{\circ}C$
- Highly resistant to vibration

Fabry-Perot Etalon: Mounting Designs

Enclosure for both optical systems

- Plexiglass box with a layer of black foam
 - Absorbs sound waves and stray light
- Layer of aluminum mylar for insulation

ECE Hardware Block Diagram (Previous Design)

• Previous plan included the design of a dual-axis solar tracker. Two stepper motors following signal directions (up, down, right, left) from the Light Sensor PCB acting as a firstlayer solar detection. SolarMEMS is the second layer due to its high accuracy and because it can give extra information (angles, radiation level, temperature, and other).

ECE Hardware Block Diagram

• After several discussions, our project sponsor recommended to use the iOptrom CEM70 Center-balanced Equatorial mount due to its very high accuracy and stability. We also added an Arduino ATmega328P slave-microcontroller to process analog signals and control the observatory door DC motor.

Light Sensor PCB V2.1 – Final version

1st layer Solar detection - Solar Tracking System

• Since our first design draft, we decided to create a 1st layer solar tracker device to be able to align the SolarMEMS (2nd-layer) on the right direction so it can receive the Sun's radiation. It is important to note that the SolarMEMS works with sun's radiation higher than 300 W/m2

Message (Enter to send message to 'Arduino Uno' on 'COM8')

	V. JOHAUL 4. U.LT	11. JEHOUL J. 4.11	
V.Sensor 1: 0.14	V.Sensor 2: 2.17	H.Sensor 3: 0.14	H.Sensor 4: 2.17
V.Sensor 1: 0.14	V.Sensor 2: 2.17	H.Sensor 3: 0.14	H.Sensor 4: 2.17
V.Sensor 1: 0.14	V.Sensor 2: 2.17	H.Sensor 3: 2.17	H.Sensor 4: 0.14
V. Sensor 1: 0.14	V.Sensor 2: 2.17	H.Sensor 3: 2.17	H.Sensor 4: 0.14
W.Sensor 11 0.14	V.Sensor 2: 2.17	H.Sensor 3: 2.17	H.Sensor 4: 0.14
W.Sensor 11 0.14	V. Sensor 2: 2.17	H.Sensor 3: 0.14	H. Sensor 42 Call
N. Sensor 11 2.17	V.Sensor 2: 2.17	H.Sensor 3: 0.14	H. Sensor 4: 2.17
N. Separat 11 2.17	V.Sensor 2: 2.17	H.Sensor 3: 0.14	B. Sanson 42 2.17
W. Sensor 11 2.17	V.Sensor 2: 2.17	H.Sensor 3: 0.14	H. Sensor 4: 2.17
W.Sensor 11 2.17	V.Sensor 2: 0.14	H.Sensor 3: 0.14	And a second

SolarMEMS Sensor

windov

microsensor and quadrants

sun ray

• The Solar MEMS device measures the incidence angle of a sun ray in both azimuth and elevation based on a quadrant photodetector device. The sunlight is guided to the detector hrough a window above the sensor. Dependent of the angle of incidence, the sunlight induces photocurrents in the four quadrants of the letector.

Microcontroller Requirements

- Our observatory needs a computer capable of handling multiple tasks concurrently.
- We need enough I/O devices to connect to our weather station, solar camera, light sensor, and motors.
- Our computer needs to be able to capture images from the solar imager on a fixed timer.
- There needs to be enough processing power for us to run a weather model.

Microcontroller Comparison

	Jetson Orin Nano series		Raspberry Pi		
	Jetson Orin Nano Developer Kit	Jetson Orin Nano 8GB	Raspberry Pi 4 Model B	Raspberry Pi Zero	Raspberry Pi Pico
СРИ	6-core Arm [®] Cortex [®] -A78AE v8.2 64	-bit CPU 1.5 GHz	Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC 1.8 GHz	single-core CPU 1 GHz	Dual-core Arm Cortex-M0+ processor 133 MHz
Memory	8GB 128-bit LPDDR5		8GB LPDDR4-3200 SDRAM	512 MB RAM	264kB on-chip SRAM
USB*	USB Type-A Connector: 4x USB 3.2 Gen2, USB Type-C Connector for UFP	3x USB 3.2 Gen2 (10 Gbps), 3x USB 2.0	2x USB 3.0, 2x USB 2.0	micro USB On-The-Go (OTG)	1x USB 1.1
Display	1x DisplayPort 1.2 (+MST) connector	1x 4K30 multi-mode DP 1.2 (+MST)/eDP 1.4/HDMI 1.4**	2x micro-HDMI	Mini HDMI	
Other I/O	44-Pin Expansion Header(UART, SPI, 2S, I2C, GPIO),	3x UART,	40-pin header	40-pin header	26 GPIO pins,
	12-pin button header,	x SPI,			3 Analog inputs,
	4-pin fan header,	x I2S,			2 UART,
	microSD Slot,	x I2C,			2 SPI,
	C power jack	1x CAN,			2 I2C,
		DMIC & DSPK,			16 PWM
		PWM,			
		GPIOs			
Power	7W - 15W	7W - 15W	15 W		
	100 mm x 79 mmx 21 mm	69.6mm x 45mm	56.5mm x 85.6mm	65mm x 30mm	51mm x 21mm
Mechanical	(Height includes feet, carrier board, module)	260-pin SO-DIMM connector			

Microcontroller Selection

- Our team decided to go with the NVIDIA Jetson Nano Developer Kit as the main computer for our project. The Jetson Nano offers great computing power, a comprehensive software development environment and a large community of developers.
- The Jetson will perform the computations necessary to track the sun, capture images, and predict incoming weather to protect the observatory platform.

Structural (Mechanical) Design

ORIGINAL DESIGN

FINAL DESIGN

• For our weather protection system design, we decided to go with a rectangular box after the considering of the original plan of a dome that was made of Plexi glass, since it was one of the material types that we founded to be durable, not too heavy so that we can stay withing the weight specifications that we need to meet and water resistant. Inside we have all the main electrical and telescope components: The linear actuator motor that will be for closing and opening of the door of the box, the MCU that will be taking care of the telling the components what to do, and solar spectrometry equipment.

Motor Comparison and Selection

 After doing all the necessary research to pick the right motor for the attachment of the weather machine that will be in our system, we concluded that the best choice for this would be the DC Linear Actuator motor. Which will give us longer lifetime and a high efficiency, with meeting the requirement of at least 12 V rating. Which will help us get the torque necessary to close the lid of our system for weather protection.

Comparisons	Trinamic Motion Control Gmbh	ECO-Worthy linear Actuator
Torque rating (oz- in/mNm)	8.85/62.58	1000N
Current rated (Amps)	5	3
Efficiency (%)	85	80
Voltage rating (VDC)	24	12
Price range	\$90.00	\$41.00
Weight (lbs)	0.662	

Selected Motor Actuator Specifications

- ECO-Worthy Linear actuator
- Rated load of 1000N
- Max travel speed 14mm/s
- Rated Voltage of 12VDC
- Rated Current of 3Amps
- Operation Temperature of –65F to +400F
- Protection Class IP65

-Used the L298N motor driver controller board to control the actuator.

-Used the Arduino uno /ELEGOO uno R3 to connect to the motor controller and MCU to be able to program and create the attached code that makes the motor attached to our door open and close base on what the weather machine tells the MCU.

ACTUATOR_MOTOR_CODE.ino

const	t open = 2; //connect to L298N	Pin ln1
const	t close = 3; //connect to L298N	Pin ln2
const	t MCU_TX = 11; //connect to MCU	D14/8
const	nt MCU_RX = 8; //connect to MCU	D15/1

void setup() {

·	
3	<pre>pinMode (open, OUTPUT);</pre>
)	<pre>pinMode (close, OUTPUT);</pre>
)	<pre>pinMode (MCU_TX, OUTPUT);</pre>
L	<pre>pinMode (MCU_RX, INPUT);</pre>
2	<pre>digitalWrite (open, LOW);</pre>
3	<pre>digitalWrite (close, LOW);</pre>
Ļ	<pre>Serial.begin(9600);</pre>
5	}
5	
,	<pre>void loop() {</pre>
3	<pre>Serial.print(digitalRead(MCU_RX));</pre>
)	<pre>Serial.print("\n");</pre>
)	<pre>if(digitalRead(MCU RX)==LOW) {</pre>
6	<pre>digitalWrite(open, HIGH);</pre>
	<pre>digitalWrite(close, LOW);</pre>
3	}
L	
5	<pre>if(digitalRead(MCU RX)==HIGH){</pre>
5	<pre>digitalWrite(open, LOW);</pre>
7	<pre>digitalWrite(close, HIGH);</pre>
3	
)	3
)	delay(100):
	}
_	
Jt	Serial Monitor ×
	/Estado and anotation to Madvine Unit on (COMC)

Engineering Spec (EE)

Solar Tracker System Engineering Spec.: Total Power Consumption <100W

Solar tracker system and MCU

Component	Voltage Requirement	Current Requirement
MCU Nvidia Jetson	5 VDC	2.4 A USB port
Arduino ATmega328P controller	5 VDC	0.05 A USB port
iOptrom CEM70	12 VDC	5 A
Servo Motor (door)	12 VDC	1.79 A
Light Sensors PCB	3.3 VDC	0.1 A

• One of the main challenges we faced was figuring out how to distribute power across the many components.

 Based on these requirements we comply with one of the design requirements to have a
 100W electrical system.

Weather Station Selection

Brand	Product model	Sensors	Features	Price
Ambient Weather	WS-2000	Anemometer, rainfall, UV, solar radiation, barometric pressure, temperature, humidity, dew point, wind chill	LCD display tablet, Water/dust resistant, Wi-Fi, 5V DC adaptor, Power Consumption 0.5W and 1.25W during Wi-Fi config mode	\$299.99
AcuRite	Atlas 01108M	Anemometer, rainfall, UV, LightNon-WiFi HD Display, 5V powerintensity, barometric pressure (from the screen), temperature, humidity, Lightning detectionlightning detection 1 to 25 miles, Water/dust resistant		\$218.16
Davis Instruments	SKU 6357	6357 Anemometer, Rain detection, temperature, humidity, Solar-powered with lithium battery backup, extreme testing, corrosion protected, UV protected		\$350
Oregon Scientific	WMR89A	Anemometer, rainfall, optional UV, humidity, barometric pressure, heat index, dew point, wind chill	Water/dust resistant, LCD screen, long- range transmission 330ft., AC adapter and battery for backup	\$199.99

 After a deep research on weather stations with the required capabilities for data acquisition and weather protection system, we selected the Ambient Weather WS-2000 due to its reliability and weather resistance.

Power Supply design v1 draft

Designed using Altium Designer Pro Software

MCU and Stepper Motors

Power Supply design v2

111

• Second power supply design had the purpose to serve a 1st test with the components. All components worked fine except for the 5V 5A line connected to the Nvidia Jetson Nano.

Power Supply PCB v2.2

Designed using Altium Designer Pro Software (Voltage Regulator LM2678T)

• There are three voltages that are needed to supply our system. We are supplying 5V to the Nvidia Jetson Nano Developer Kit (MCU) and the Arduino Uno slave-microcontroller. At the same time, our Solar MEMS device and the Camera will be connected directly to the MCU. On the other hand, 12V is required for the iOptrom CEM70 mount and for the Servo Motor that will be in charge on opening and closing the weather protection case that will protect our core devices. 3.3V will be supplied to the Light Sensors PCB that will be connected to the Arduino Uno microcontroller.

Power Supply PCB overall design with Designators for each Voltage-output phase.

P.S. PCB Schematic v3

New Voltage Regulators XL4015 & XL4016E1

We designed a V3 of the power supply PCB to fix all the issues from v2.2. We succeeded and designed a great final product.

12V output Designator schematic x2

Light Sensors PCB Schematic v2.1

Designed using Altium Designer Pro Software

Light Sensors PCB overall design. 3.3V input

Power Supply PCB v3

PCB 2D design view

Light Sensor PCB v2.1

PCB 2D design view

PCB 3D top view

PCB 3D back view

PCB Design v2.2 – Lessons Learned

Power Supply PCB v2.2

After several reviews and technical testing to our Power Supply PCB v2.2 we couldn't find the exact issues that was causing the voltage drop on the 5V 5A line.

Possible causes:

- 5A deficiency on the LM2678T voltage regulator
- PCB layout
- Distance between components
- Inductor Malfunctioning
- Not enough boost Capacitance
- GND bad layout

On the other hand, our new design **Power Supply PCB v3** worked perfectly fixing all the issues from previous versions and getting a better performance without any voltage drops

Software Diagram

The software diagram depicts the general control flow of our programs. The weather detection runs first to ensure the protection of our equipment. Then the platform must be centered on the sun before an image of the Sun can be taken.

Software Requirements

- Our software required us to integrate multiple different devices to automate the operations of the observatory.
- We needed to create a model that would predict incoming rainfall. We did this with a simple logistic regression algorithm.
- We were required to capture images from our solar imager at periodic intervals
- We needed to drive a motor to open and close the observatory.
- The software also controlled the movement of our observatory's mount, letting us continuously track the Sun.

Weather Model

- To protect our observatory from Florida's weather, we used a weather model to predict if there would be rain in the next hour or not.
- We collected weather data from the NCEI's Climate Data Online (CDO) database.
- Then, the data was used to train and test a simple logistic regression model.

	precision	recall	f1-score	support
False	0.96	1.00	0.98	46636
True	0.70	0.12	0.20	2156
avg / total	0.95	0.96	0.94	48792

Classification Report for the Logistic Regression

iOptron Mount

- As requested by our project's sponsor, we used an iOptron CEM70 optical telescope mount to track the Sun.
- We programmed the iOptron using the Instrument Neutral Distributed Interface (INDI) library. INDI is an open-source software made to control astronomical devices.
- The mount moves to center the Solar MEMS and light sensor PCB towards the brightest light detected.

Tror_mod = modifier_ob Mirror object to mirro object to mirror_object Tror_mod.mirror_object Peration = "MIRROR_X": Tror_mod.use_X = True Tror_mod.use_Y = False Operation == "MIRROR_Y Tror_mod.use_Y = True operation == "MIRROR_Z Operation == "MIRROR_Z Tror_mod.use_X = False Operation == "MIRROR_Z Tror_mod.use_X = False Tror_mod.use_Y = False Tror_mod.use_Z = True

election at the end -add _ob.select= 1 er_ob.select=1 ntext.scene.objects.action "Selected" + str(modifient irror_ob.select = 0 bpy.context.selected_ob ata.objects[one.name].selected_ob ata.objects[one.name].selected_ob

mint("please select exactle

wpes.Operator): X mirror to the select ject.mirror_mirror_x" ror X" ontext): ontext): xt.active_object is not

Software Tools

- The main software for our observatory was written in Python. Python was used for its extensive collection of libraries, making it easier for us to integrate the components on our observatory.
- The Jetson Nano came with the NVIDIA Jetpack Software Development Kit (SDK), a full development environment. Including a Linux Kernel with an Ubuntu desktop environment.

Administrative Content

- Budget
 - Based on what our sponsor suggested and the parts that were used for our project we were given a budget with a range expenditure of 10k-20k.
 - After all materials and parts were obtained, we end it up at approximately \$5,000.
- Work distribution
 - From the CREOL department Kara and Tamara are the ones responsible for the Fabric-Perot and Spectrometer aspect of the project.
 - For the electrical, mechanical structure, power supply and light sensors part of the project Miguel and Jarolin are the ones responsible.
 - For the data collection, the MCU and software Misael is the one responsible for this part of our project.

Name	Primary	Secondary
Misael Salazar	Software, MCU, Weather Station & Camera & SolarMEMS data processing, iOptrom Mount setup/control	Hardware
Kara Semmen	Spectrometer	Fabry-Perot
Tamara Nelson	Fabry-Perot	Spectrometer
Miguel Daboin	Light Sensors PCB & Power Supply PCB Design/Fabrication/Soldering/Testing, Light Sensors Analog Signals Processing	WPS Motor, SolarMEMS
Jarolin Jimenez	WPS DC Motor, Controller & Main Door Mechanism design & implementation, Box Cutting	Hardware, Power Supply

Quantity	Description	Price
1	NVIDIA Jetson Nano Developer Kit	149.00
1	NexImage 5 Solar System Imager	199.95
1	Askar FMA180 Pro APO Sextupler Refractor	399.00
1	Eco wathy linear actuator	41.00
1	AC Power Plugs & Receptacles PLUG NEMA 5-15 125V WATERTITE	45.03
1	AC Power Plugs & Receptacles Right Angle Receptacle, SMT Solder Tabs, 2 Position	1.64
1	Edimax 2-in-1 WiFi and Bluetooth 4.0 Adapter	21.50
2	25 mm 400 - 750nm Broadband Mirror	150.00
1	(a) 4900 K, 740 mW Mounted LED	171.28
1	(a) Adjustable Collimation adaptor with 1" Lens, 350-700 nm AR coating	309.96
1	T-Cube LED Driver	348.22
1	T-Cube Power Supply, 15V, 2.66A	39.54
2	25.0/25.4mm Optic Dia., Side Flange Direct Mount	63.00
1	MicroSD Card 256 GB	19.99
1	Ambient Weather WS-2000 Home Weather Station with WiFi Remote Monitoring and Alerts & Thermo Hygrometer	299.99
1	ISSDX SUN SENSOR: Digital sensor	381.40
10	NORPS-12 - CDS Photoresistor	24.62
4	Motor cable angled, 2m	121.60
8	Plexiglass (per our discussion regarding plexiglass cover)	600.00
1	Fan-4020-PWM-5V for Jetson Nano Developer Kit	8.35

Bill of Materials

