AUTOMATED OPTICAL INSPECTION

0

Q

SPONSORED BY

- VALERY JEAN (EE)
- JOSEPH SAUCEDA (CPE)

GARIN ARABACI (EE)

ANTHONY BADILLO (PSE)

GROUP 1

MEET THE TEAM

Joseph Sauceda (CPE)

Valery Jean (EE)

Garin Arabaci (EE)

INTRODUCTION – TECHNOLOGY SUMMARY

- Automated Optical Inspectors (AOIs) are a device that scans small parts on production lines to determine the quality of the product
- Use high resolution imaging systems
- Compiles said imagines and determines quality with machine learning and AI
- Higher end systems can use 3-D modeling for a more immersive analysis

MOTIVATION

- Designing an AOI that is cost efficient that will help the UCF Photonic MOFD Team with their manufacturing Quality Control (QC)
- The product that they are developing is a color changing fabric, with individual copper wires that heat thermochromic pigments
- Operating in the IR range in order to determine if the heat signature from the fabric matches noted patterns that resemble pass/fail patterns
- System will also have an attached laser counter in order to further help the MOFD keep track of the amount of material being used

GOALS & OBJECTIVES

- Create a device that can take photos at a set rate
- System can process images at the same interval
- System can determine whether the image of the product passes or fails through machine learning
- Laser counter that can keep an accurate count of the fabric material

ENGINEERING SPECIFICATIONS

Description	Project Minimum Targets
A.I. Positive Detection rate	>70%
Error rate	<30%
Rate of reading and processing	>1 ft/s
Thermal inspection area	<100 um
Cost	<\$2500
Photo Rate	>360 threads/sec

AOI SYSTEM DIAGRAM

- Image of the fabric is captured on the production by our 150 mm frontend optic
- The image is further focused by a 75 mm lens
- The image is then focused and magnified by our camera system with an aperture to help correct most ambient light

LASER COUNTING SYSTEM

- Our laser is put through a Galilean Beam expander in order to expand the diameter by a rough factor of 3.
- The laser is then focused through a 150 mm Plano Convex lens in order to focus the beam so that it has an appropriate spot size of 50 microns

OPTICS THEORY – GAUSSIAN BEAM PROPAGATION

•The beam waist and the Depth of Focus can be solved for with the following equations

• Finding the parameters in order to get an ideal value is also possible since the wavelength, diameter, and focal length can be constants

OPTICS THEORY – GALILEAN BEAM EXPANSION

•To achieve the proper beam diameter for target beam waist and depth of focus, a beam expander is used

•The Galilean Beam Expander is used with a convex and concave lens to increase the diameter by a factor of 3.

•This telescopic methodology is the same process for our camera

OPTICS HARDWARE

Lenses : \$280 from Thorlabs

Shape of Lens	Plano-Convex
Substrate	NBK-7
Wavelength Range	350 nm – 700 nm
Lens Diameter	1"
Shape of Lens	Plano-Convex
Substrate	NBK-7 Uncoated
Wavelength Range	350 nm – 2000 nm
Lens Diameter	1"

Laser: Procured from MOFD Team

Laser Type	Semiconductor
Wavelength	533 nm
Power Output	50mW +
Power Source	Two Double A Batteries
Beam Diameter	$\sim 1 \text{ mm}$
Beam Divergence	Unknown

OPTICS HARDWARE CONT.

- Arducam HQ IR-CUT Camera 12.3MP 1/2.3-In IMX477 w/ 6mm CS Lens for Jetson Nano (\$80)
- FD11A Si Photodiode (2 pack \$32)

WORK DISTRIBUTION

- Power Supply: Valery Jean
- AOI: Anthony Badillo
- Laser Counter: Anthony Badillo
- Stepper Motor: Garin Arabaci
- Control System PCB: Garin Arabaci
- Image Processing Software: Joseph Sauceda
- Secondary MCU Software: Joseph Sauceda
- Alert Interface (LEDs): Garin Arabaci
- Photodiode RC Filter: Garin Arabaci

DESIGN FLOW DIAGRAM

0

Ó

()

CONTROL SYSTEM

CONTROLLER **OUNIT SELECTION**

6

	MSP430FR6989	ESP32	Raspberry Pi Pico (Secondary)	Raspberry Pi 4B	Jeston Nano (Main)
CPU Cores	1 core	1 or 2 core	2 cores	4 cores	4 cores
CPU Speed	16 MHz	240 MHz	133 MHz	1.5 GHz	1.43 GHz
Memory	2 KB	520 KB	264 KB	VideoCore VI 3D	128 core Maxwell
GPU	N/A	N/A	N/A	1,2, or 4 GB	2 or 4 GB
GPIOs	83 pins	36 pins	26 pins	28 pins	28 pins
Communication Protocols	UART, I2C, SPI	UART, I2C, I2S, SPI	UART, I2C, SPI	UART, I2C, SPI	UART, 12C, 12S, SPI
ADC	12-Bit	12-Bit	12-Bit	N/A	N/A
PWM	5 Channels	16 Channels	16 Channels	2 Channels	2 Channels
USB3.0	N/A	N/A	N/A	YES	YES
Ethernet	N/A	N/A	N/A	YES	YES
Storage	128 KB	16 KB	2 MB	microSD	microSD
Power Maximums	3.3V/1.6mA [0.005W]	3.3V/0.5A [1.65W]	5V/100mA [0.5W]	5V/3A [15W]	5V/5A [25W]
MISC	Low Power Modes	Bluetooth/Wi-Fi	Wi-Fi Variant	Bluetooth/Wi- Fi	Dedicated GPU, AI

STEPPER MOTOR FOR AUTO-FOCUSING

- The desired resolution of movement for the auto-focusing system was <u>0.1mm</u> minimum.
- Using a belt driven system, with the following parameters we can achieve a resolution of <u>0.01mm</u>.
 - NEMA17 motor with 200 steps per revolution (Srev)
 - A4988 at 1/16 steps (fm)
 - 2mm pitched belt (p)
 - 16 tooth pulley (Nt)

A4988 GND -RESE

 $s_{rev} \cdot f_m$

	Allegro A4988 (Selected)	TI DRV8825	TB6560AHQ
Min Motor Voltage	8V	8.2V	4.5V
Max Motor Voltage	35V	45V	34V
Continuous Current	1.2A per phase	2.2A	3A per phase
Max Current	2A per phase	2.2A	3A per phase
Min Logic Voltage	3V	1V	4.5V
Max Logic Voltage	5.5V	3.5V	5.5V
Microsteps	Full, 1/2, 1/4, 1/8, 1/16	Full, 1/2, 1/4, 1/8, 1/16, 1/32	Full, 1/2, 1/4, 1/8, 1/16

POWER REQUIREMENTS AND PROTECTIONS

Device	Estimated	MAXIMUM
Jetson GPU	5V/2A (10W)	5V/5A [2.5A per pin] (25W)
Jeston USB (IR CAM)	5V/0.77A (3.85W)	From GPU power
PICO	5V/?A	5V/100mA (0.5W)
PICO ADC	3.3V/?A	Only for Reference
A4988 Logic	3 to 5.5V/?A	3.3V/8mA (0.03₩)
A4988 Motor	12V/1A (12W)	12V/2A (24W)
Totals	26W	50W

- The Jeston will be powered via 3 pins found in its 40pin jumper. Pins 2 and 4 both accept 5V, but each have a maximum of 2.5A. Pin 6 will be GND.
- In order to protect the Jetson, 2 eFuses will be implemented to restrict the current and voltage that can be delivered to these pins.
- The PICO will be powered via the VSYS pin at 5V.
- As detailed by the PICO's datasheet a Schottky diode is recommended.
 - The same Schottky diode used internally to protect the VBUS pin will be used in this case.
 Which is a 20V 1A Schottky.

EFUSES

- The eFuse allows for precision current limiting and overvoltage clamping
- In this case, I made use of the TPS25200 from TI which I configured for exactly 2455.12mA max current limiting. This was accomplished with the following value
 - Rlim = 42.2K Ohm 1%
 - Cin = 0.1uF ceramic bypass
 - Cout = 20uF (using 2 10uF in parallel) low ESR ceramic
- 4 Operational Modes
 - Undervoltage Lockout (UVLO)
 - Overcurrent Protection (OCP)
 - Overvoltage Clamp (OVC)
 - Overvoltage Lockout (OVLO)
- Feature's fault signaling which will be routed to the PICO and is Active-Low. This will trigger for Overcurrent or Overvoltage, or Overtemperature situations.

Specifications

Specifications ^a			
Wavelength Range		λ	320 - 1100 nm
Peak Wavelength		λρ	960 nm
Responsivity (960 nm)		ℜ(λ)	0.60 A/W
Active Area			1.21 mm ²
Rise Time (650 nm, R _L =1 kΩ, 0 V)		tr	400 ns (Typ.)
NEP (960 nm, 0 V)		W/JHz	6.8 x 10 ⁻¹⁶
Dark Current (10 mV)		d	2 pA (Max)
Capacitance (0 V)		Cj	140 pF (Typ.)
Package			TO-18
Sensor Material			Si
Maximum Rating			
Bias Voltage (Reverse)	everse) 30 V		
Reverse Current	-		
Operating Temperature	-40 to 100 °C		
Storage Temperature	-55 to 125 °C		

PHOTODIODE

• THORLABS FD11A

- Reverse biased the diode with 3.3V from the Pico
- RC Low Pass Noise Filter
 - Cutoff Frequency of 1500Hz
- Connects to pin ADC2 of the Pico

6

CONTROL SYSTEM BLOCK DIAGRAM

11/28/2022 10:24 AM f=2.65 C:\Users\garin\AppData\Local\Temp\Neutron\ElectronFileOutput\15984\sch-0088fc12-6763-4a35-bc82-4f00b483bcd4\Control System Schematic v2.sch (Sheet: 1/1)

CONTROL SYSTEM PCB

CONTROL SYSTEM PCB

POWER CONTROL

Two Types of Power Supply

• AC/DC Converter

• DC/DC Converter

AC/DC CONVERTER

- LM5021 From TI
- AC input range 100VAC to
 240 VAC
- DC output of 12V, 4A

 \bigcirc

ŝ

RG*

5310

<u>CCOMP</u>

ני_ש וויאספות.

/JALCA NIT

• AC-DC POWER SUPPLY PCB

BUCK DC/DC CONVERTER

- TPS54561-Q1 from TI
- Input Voltage range : 7V to 60V
- Output Voltage 5V at 5A

BOTTOM SIDE

TOP SIDE

C

 \bigcirc

C

SOFTWARE DESIGN OVERVIEW

SOFTWARE TOOLS

• PYTHON

•VISUAL STUDIO CODE •GITHUB

IMAGE CAPTURING USING OPENCV

OPENCV
Extensive Libraries
Optimized for Real-time Applications
Python Support

Initial Image Preprocessing

IMAGE PRE-PROCESSING (DSP)

IMAGE PROCESSING COLOR ADJUSTMENTS SEGMENTATION FILTERING DSP

MACHINE LEARNING BINARY CLASSIFICATION

MACHINE LEARNING ALGORITHM

• Test

Training Image Data • Train **Machine Learning** Algorithm • Evaluate Analyze Errors Iterate R • Optimize Evaluate

MACHINE LEARNING ALGORITHM

MACHINE LEARNING ALGORITHM

ML CLASSIFICATION PROCESS

- Import Image
- Classify Result
- Improve Model
- Log Outcomes

LOGGING, ALERTS AND LASER COUNTER

- Logging Service
 Historical Data Store
- Alerts
 - LED System
 - GUI Interface

Electronics and Power Budget Spending

ltem	Current Spending
Custom Power Supply	\$100
Custom PCB	\$3.70
Custom Enclosure (3D print)	\$20
Microcontroller	\$455
Stepper Motor Driver	\$11.45
Circuit Components	\$20
Total	\$610.15

Optics Budget Estimation

ltem	Cost		
	Estimated		
Camera System	\$120		
Lenses	\$280		
Laser	\$0		
Total	\$4000		

PROGRESS

Overall Design Progress

ISSUES

- Learning curve to applying each Python Library
 - OpenCV
 - Micropython
 - PyTorch
- Training is time intensive
- Hardware delays
- Camera issues
 - Resolution
 - Framerate

QUESTIONS?

Q