College of Optics & Photonics
Spring 2022
OSE-5203 Geometrical Optics

Time: Tuesday and Thursday 1:30 PM – 2:45 PM
January 11, 2021 – May 3, 2022

Location: CREOL-A214

Credit Hours: 3 hours

Prerequisite: Graduate standing or consent of instructor

Catalog Description: Fundamentals of Geometrical Optics, Geometrical Theory of Image Formation and Aberrations

Course Description:

Learning Outcomes:
- The students should understand the basic principles of modern geometrical optics.
- The students should also be able to analysis and design basic optical systems.
- The students should be able to perform an exact ray tracing and evaluate the system aberrations.

Instructor: Dr. Jim Moharam, Professor
- Office: CREOL-234
- Email: moharam@creol.ucf.edu
- Office Hours: Monday and Wednesday 3:00 PM - 4:00 PM or by appointment on Zoom

Class Website:
- Course materials (syllabus, notes, problem sets, solutions, and old exams) will be available on https://webcourses.ucf.edu/
- Lectures are recorded on Zoom and the link to the lectures is available on Webcourses.

Reference Materials:
- Class notes.
Course Requirements and Grading Policy:

- **Problem sets: 10%**
 - Problem sets are to be submitted by the due date either in person in class or by email in PDF format: (Last Name-HW#.PDF).
 - Late homework will not be accepted.
 - You may work with others but the submission must be all yours.
- **Midterm Exam I: 25%** Thursday, February 17 1:30 - 2:45 PM
- **Midterm Exam II: 25%** Thursday, March 31 1:30 - 2:45 PM
- **Final Exam: 40%** Tuesday, May 3th 1:00 - 3:50 PM

Exams are comprehensive and are closed book and notes.

Make up Work/Exam Policy:

If an emergency arises and a student cannot submit assigned work by the due date or cannot take an exam on the scheduled date, the student must notify the instructor no less than 24 hours before or the scheduled date.

Grading Scale: Plus and minus grades will be used.

<table>
<thead>
<tr>
<th>(%)</th>
<th>Rubric Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ≥ 90</td>
<td>Excellent, has a strong understanding of all concepts and is able to apply the concepts. Has full mastery of the content of the course.</td>
</tr>
<tr>
<td>90 > B ≥ 70</td>
<td>Good, has a strong understanding of most or all of the concepts and is able to apply them to stated and defined situations.</td>
</tr>
<tr>
<td>70 > C ≥ 60</td>
<td>Average, has a basic understanding of the major concepts of the course and is able to apply to basic situations.</td>
</tr>
<tr>
<td>60 > D ≥ 50</td>
<td>Below average, has a basic understanding of only the simple concepts and is able to apply to only a limited number of the most basic situations.</td>
</tr>
<tr>
<td>F < 50</td>
<td>Demonstrates no understanding of the course content.</td>
</tr>
</tbody>
</table>

Calendar:

<table>
<thead>
<tr>
<th>January (6)</th>
<th>February (8)</th>
<th>March (8)</th>
<th>April (6)</th>
<th>May</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>8 (SB)</td>
<td>10 (SB)</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17 (MT)</td>
<td>12</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>25</td>
<td>27</td>
<td>29</td>
<td>31 (MT)</td>
<td></td>
</tr>
</tbody>
</table>

- National Holiday-University Closed January 17, 2022
- Spring Break – No Classes March 6-13, 2022
- Withdrawal deadline March 25, 2022
General Information:
- Students in the on-campus section are required to attend the class in person.
- Your e-mail of record at UCF will be used for communication.
- My preferred method of communication (other than in person) is e-mail. It is checked regularly including on weekends.
- If you have questions, out of office hours, E-mail me and I will get back to you within a reasonable time.

Information for Student in the Remote Section:
- The exams will be administered remotely under the honor code. External materials of any form (book, notes, electronic, information on the web, etc.) as well as discussing or seeking or receiving assistance on the exam from others are not allowed. Procedures will be announced.

Financial Aid and Participation Verification:
- Students' academic activity at the beginning of each course must be documented. Student must complete the academic participation verification question posted on Webcourses no later than week after the first class. Failure to do so may result in a delay in the disbursement of financial aid.

Class Attendance:
- Regular class attendance is necessary for students to fully grasp the course concepts. If you miss a class session, it will be your responsibility to find out the materials that were covered.

Professionalism:
- Per university policy and plain classroom etiquette, mobile phones, etc. must be silenced during all classroom lectures, unless you are specifically asked to make use of such devices for certain activities. You should be present in class before the lecture begins.

Ethics:
- As in all university courses, “The Golden Rule of Conduct” will be applied. If you are uncertain as to what constitutes academic dishonesty, please consult “The Golden Rule” in the UCF Student Handbook (www.goldenrule.sdes.ucf.edu) for further details. Violation of these rules will result in a record of the infraction being placed in your file and additional sanctions may be applied.

Students with Special Testing/Learning Needs:
- Students with documented special needs and requiring special accommodations must be registered with UCF Student Disability Services (www.sds.sdes.ucf.edu) or at (407) 823-2371 prior to receiving those accommodations. Students must inform the instructor of their special needs as early as possible in the first week of classes.
Optical Imaging System:

Infinity-sa.com, sciencedirect.com, hyperphysics.astr.gsu.edu, edmondoptics.com
Course Outline:

- **The Foundations of Geometrical Optics**
 Waves, wavefronts, and rays
 Irradiance and the inverse-square law
 Propagation of wave fronts, reflection, refraction
 Snell's Law
 Fermat's principle
 The basic postulates of geometrical optics

- **Elementary Ray Optics of Planar Surfaces**
 Reflection and refraction
 Image parity and handedness upon reflection
 Plates –ray lateral displacement and image longitudinal shift
 Mirrors
 Prisms –refraction and reflection

- **The Paraxial Approximation for Curved Surfaces**
 Spherical and Parabolic surface
 Small angle approximation
 Ray height and sign convention
 Thin lens approximation
 Primary and secondary focal points
 Real and virtual image
 Optical power
 Graphical ray tracing

- **Imagery by a Single Surface and a Thin Lens**
 Imagery by a single surface
 The conjugate equation
 Optical power and the effective focal length
 Primary and secondary focal distances
 Imagery by a mirror
 Imagery by a thin lens
 Image size and location
 Magnification: longitudinal, angular, and visual magnifications
 Imagery of an extended object

- **Gaussian Optics**
 Paraxial ray tracing for systems of many surfaces
 Gaussian ray tracing equation.
 Magnification by a multi-surface system
 Primary and secondary principal planes
 Frond and back focal planes
 Imagery by a thick lens
 Nodal points, measurement of focal length
 Newtonian imaging equation
 Optics of the eye
- **ABCD Matrix Transformation**
 Matrix formulation for refraction and for translation
 The conjugate matrix
 Principal and focal planes
 Object and image planes

- **Apertures in Optics systems**
 System aperture stop and entrance and exit pupils
 Marginal and chief rays
 Vignetting
 Optical invariant
 Field stop and entrance and exit windows
 Field of view
 Numerical aperture and number
 Depth of focus and depth of field

- **Radiometry and Photometry**
 Light flux transmission through optical systems
 Solid angle and projected area
 Radiant flux, irradiance, radiance, Lambertian sources
 Radiometry of imaging systems
 Extended sources, distant sources

- **Chromatic Aberration**
 Optical material dispersion
 Chromatic aberrations
 Chromatic aberrations correction – Achromats

- **Real ray tracing**
 Ray transfer between spherical surfaces
 Refraction of a general ray
 Meridional and skew rays

- **Monochromatic Aberration**
 Ray aberration and wavefront aberration
 The wave aberration function and classification of aberration
 The Seidel aberration polynomial
 Seidel primary aberrations
 Longitudinal and transverse focus shifts
 Primary aberrations: spherical, coma, astigmatism, distortion, field curvature
 The Seidel Sums
 Primary aberrations of a plane parallel plates
 Primary aberrations of a spherical mirror
 Thin lens central aberrations (stop at the lens)
 Thin lens aberration with a remote stop

- **Gaussian Optics of Optical Instruments and Components**
 Objectives, telescopes, microscopes, projection systems, the eye