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Chapter 1 - Introduction

» Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html

The propagation of light through materials is affected by the motion of electric charges, for
example by the movement of bound electrons of the atoms in the material. We will derive
physical models do describe the charge motion and the resulting optical properties in later
Chapters. In this introductory Chapter we first develop an intuitive picture of the interaction
of light with charge, and make a prediction of the wavelength dependent refractive index.

Phenomenological description of the refractive index

t=0 0| -f"\-i,-/w'_

Figure 1.1

Light is usually encountered as a propagating transverse electromagnetic wave, meaning
that the electric and magnetic fields oscillate in space and time, and that the direction of
these fields is normal to the propagation direction. When a light wave encounters a charged
particle (electron, positive ion, negative ion, positron, ..) the electric field exerts an electric
force Fe=q-E where q is the charge of the particle, and E is the field strength.' The time
dependent electric field accelerates the charge, and accelerating charge causes radiation.
This is light-matter interaction in a nutshell: optical radiation accelerates charges in a
material, and accelerating charges emit light that adds to (or subtracts from) the incident

light.

To understand how accelerating charge gives rise to radiation, let’s consider the electric
field lines around a positive charge that is initially at rest, and that suddenly undergoes
positive acceleration. The charge is initially surrounded by a purely radial electric field of
strength E = (#/r2)/4me, corresponding to straight field lines extending to infinity, as
sketched above. Immediately after a brief acceleration field lines near the charge still point
radially outward. However, at larger distances, the information about the new charge
position is not yet known due to the finite speed of light. In order to connect these different
field distributions, at an intermediate position the field lines need to have a transverse
component that is pointing downward. These transverse components move away from the

N -

I We will discuss units later. Note that we also ignore the Lorentz force 131 =qVvXB.



charge at a velocity ¢, and represent the radiation pattern around accelerating charge. Note
that no transverse components exist in the direction along the charge acceleration direction.!

When light propagates inside gases, liquids or solids, electrons (negative charge)
and atom cores (positive charge) are accelerated continuously. This results in an oscillating
charge position, corresponding to an oscillatory dipole moment. The periodic charge
acceleration produces radiation at a frequency that matches that of the incident light. This
reradiated light adds to the incident light wave, which is now slightly modified. Thus,
refractive index can be seen as the result of the re-radiation of light from a large collection
of oscillating dipoles.
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Figure 1.2 Development of dipole radiation, showing only electric field components

To understand the origin of the refractive index, and why it is usually larger than 1, we
need to consider the phase of the charge oscillation. Let’s first look at the response of a
charge to an incident oscillating field. For a positive bound charge that is driven well below
resonance, we find that the position of the charge is exactly in phase with the driving field,
see graph below. The velocity can be seen to be 90° ahead in phase, and the acceleration is
yet another 90° ahead. In the discussion above, we found that the field resulting from this
acceleration is pointing in the direction opposite to the acceleration. Surprisingly, this
analysis shows that the reradiated field at low frequencies is exactly in phase with the
incident wave. This would correspond to a refractive index which is always exactly equal
to 1, which we know is incorrect.
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Figure 1.3 Charge motion under oscillatory driving field

The error in the analysis lies in the fact that we considered only a single isolated charge. In
reality, we need to consider the effect of many radiating dipoles, as shown below. The

i From this analysis it also follows that static charges and charges with constant velocity do not radiate.
ii Except for very strong fields. In that case we would need to consider nonlinear optics, discussed in a later
Chapter.



incident plane wave will drive a sheet of dipoles, all radiating in phase with the incident
light. At a finite distance from these dipoles, the total field observed contains radiation
contributions from many dipoles. On some optical axis of choice, radiation coming from
off-axis dipoles will arrive a little later, causing a phase delay, or reduced apparent velocity
of the light. By carefully integrating the effect of all dipoles, it follows that the total phase
delay adds up to exactly 90° compared to the ‘direct’ wave. As a result, the low frequency
refractive index is larger than 1, with the magnitude given by the number of dipoles
contributing and their individual dipole moments.
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Figure 1.4 Excitation of a sheet of dipoles, and resultant field on optical axis

To understand the frequency dependence of the refractive index, we need to add the
frequency dependent response of a Lorentz oscillator to this picture. We know that at low
frequencies we obtain a finite dipole moment and zero phase delay, while near resonance
the phase delay approaches 90° and the amplitude reaches a maximum. At high frequencies
the phase difference approaches 180° and the amplitude approaches zero. The resulting
changes of the refractive index are sketched below:
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Figure 14.5 Field from sheet of dipoles excited at different frequencies



At low frequencies (top graph), the Lorentz oscillator responds in-phase with the incident
light, but due to the collective ‘dipole sheet’ effect described above, the net phase delay is
0°(oscillator) + 90°(sheet effect) = 90°. By adding this finite phase-delayed response to the
incident field, the light appears to propagate slightly slower, corresponding to a finite
refractive index n>1. As the frequency increases, the oscillation amplitude goes up, as does
the phase delay. Both effects together add up to a larger delay, and a higher refractive
index. Exactly at the resonance frequency, the oscillation amplitude reaches a maximum.
However, at this frequency the Lorentz oscillator responds with a phase delay of 90°,
resulting in a total phase delay of 90°(oscillator)+90°(sheet effect)=180°. The dipoles can
be seen to generate radiation that destructively interferes with the incident light, resulting
in a change of the amplitude, but no change in the phase, corresponding to a real part of
the refractive index close to 1, and finite absorption. At frequencies above the resonance,
the phase delay exceeds 180°, which can be seen as a phase lead. The light appears to be
accelerated, corresponding to a refractive index less than 1. The resulting refractive index
curve is shown on the right side of the Figure. As we will see in later chapters, a more
thorough model description of the polarization of atoms in a material leads to similar
refractive index spectra.
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Chapter 2 - Light propagation in lossless media

» Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html

In Chapter 1 we saw that the refractive index of materials can be understood as the result
of dipole radiation from charges accelerated by the electric field. In this chapter we will
take a different viewpoint. Instead of considering separate contributions from individual
atomic dipoles, we assume that materials can be described as having a smoothly distributed
polarization. We will call this the ‘continuum’ description. The effect of such a continuous
medium on wave propagation is described by Maxwell’s equations. In this Chapter we
discuss light propagation through a material in which all charges respond instantly to
applied fields, corresponding to a perfectly transparent (lossless) medium.

Wave propagation in vacuum

As mentioned in Chapter 1, light is an electromagnetic wave containing an oscillatory
electric field and an oscillatory magnetic field. To fully describe a light wave we therefore
need to know the magnitude and direction of E and B at every point in space. The

corresponding field distributions are time dependent vector fields, written as E(# t) and
B(# 0.

Maxwell’s equations describe the classical relations between charge (units Coulomb, C),
current (C/s), electric field (V/m), and magnetic flux density B (Wb/m? or Tesla=10*
Gauss). The complete Maxwell equations include terms related to free charge, see
Appendix B, however here we focus on light propagating either in vacuum or in
homogeneous media without localized free charge concentrations, which simplifies the
equations.

Before we discuss light-matter interaction, let’s first discuss light propagation in the
absence of any matter. In vacuum (no material, no free charges), Maxwell’s Equations are

V-E=0 (2.1)
V-B=0 (2.2)
. 0B
VXE=—— 2.3)
at
- oF
x B = — (2.4)
VX B = €plo ot

Here €, is the vacuum permittivity and p, is the vacuum permeability. These equations
allow for electric and magnetic field solutions that oscillate in space and time, and that
propagate together. Instead of trying to solve for B and E at once, we first use these
equations to derive an expression that puts requirements on E and that does not explicitly
depend on B. Taking the curl of Eq. 2.3 and the negative time derivative of Eq. 2.4, we
find

11



o 0 .
VxVsz—a(VxB) (2.5)

] " 9%E
—g(v X B) = _EOHOW (26)
Comparing these two relations we see that the following relation must be satisfied:
. 9%E
VXV XE=—€lo=—> 2.7)
€olo 9t2

Using the general vector relation V X (V x F ) = —V2F + V(V -F ) we have

- ﬁ 0%E
-VZE+V(V-E) = —Colo 57 (2.8)

Since we are in vacuum, the field is divergence-free (no net charge present). We thus have
found an equation linking a double spatial derivative (i.e. the curvature) of E to a double
time derivative of E:

2
V2E = Eoﬂoﬁﬁ (2.9)

This is the wave equation in vacuum, which allows many different wave-like solutions,
including spherical waves, cylindrical waves, and complicated phenomena like curved
Airy beams and non-diffracting beams. It also allows a wide variety of time dependencies,
including ‘single-frequency’ (narrowband) laser light, regular sequences of short pulses
with evenly spaced frequency contributions (a ‘frequency comb’), or a Gaussian
distribution of frequency components producing a single short pulse. This text doesn’t
focus on such exotic cases. Instead, to understand light matter interaction we can focus on
the simplest possible time-dependent solution to the wave equation inside homogeneous
linear media: the plane wave, described by

E@t,7) =E, cos(E 7 — ot + ). (2.10)

Here E} = (Eyx, Ery, Eyz) is a real field amplitude vector of the wave in units V/m, o is

the angular frequency in rad/s, k is the wavevector, 7 is the position, and ¢ is a possible
fixed phase offset. The angular frequency w is simply given by w = 2rf and is written as
having units rad/s, to indicate a phase that varies by w radians per second. The radian is
not a physical unit so in principle it could be omitted, but the convention is to include it
when dealing with angular frequency. The wavevector k describes spatial variation of the
field, with a magnitude given by k=21/A with A the wavelength. The wavevector describes
‘phase variation per distance’ in radians per meter, but it is typically written as having units
m!. The direction of the wavevector corresponds to the propagation direction of the wave.

Maxwell’s equations put requirements on the allowed orientations and magnitudes of B
and E relative to k and to each other, but in deriving the wave equation for E in vacuum
we lost any requirements on the direction of the field vector or the relative magnitude of B
and E. Note that Eq. 2.9 represents three identical scalar wave equations for Er, E., and
E... Apparently our field components each must satisfy the scalar wave equation:

12



62
VZE = EoﬂoﬁE (211)

Since vacuum is isotropic, light propagation occurs exactly the same way for any choice
of propagation direction. To find requirements on the relation between angular frequency
and wavevector, we can thus use a scalar trial function of the form

E(t,z) = E, cos(kz — wt) (2.12)

where we have chosen direction along the z axis, and set the phase offset to zero for
simplicity of notation. Substituting this trial function into the scalar wave equation, and
taking the temporal and spatial double derivatives we find

) 1
—w?E, cos(kz — wt) = —k?eouoEy cos(kz — wt) = — = =c (2.13)
k €olo

It can easily be shown that the quantity w/k is the speed at which phase fronts move
through space, known as the phase velocity v,. Apparently Maxwell’s Equations demand
that light moves through vacuum at a fixed velocity, independent of the frequency. This
speed is known as ‘light speed’, denoted by c.

The wavelength of light in vacuum A, follows simply from

R W 2.14
kK 2m/, "= 219

Note that we haven’t proven that our trial wave is a solution to Maxwell’s Equations. We
have only proven that our trial wave with phase velocity c satisfies our scalar wave equation
for the electric field. To satisfy Maxwell’s equations, we still need to find a combination

of E, B and k that satisfies relations 2.3 and 2.4. Substituting a vectorial trial wave for E

and B with the same phase velocity and a shared wavevector k it can be shown that E and
B are normal to each other with a relative magnitude ¢, and that both are normal to the
direction of the wavevector. The resulting plane wave is known as a transverse
electromagnetic wave.

Field-induced polarization in materials

As we saw in the preceding section, in vacuum light of any frequency propagates along k
at a constant speed c. Inside materials however, light propagation is modified by the
interaction between the electromagnetic fields and charges. Materials are composed of
atoms that contain positive and negative charge in the form of protons in the atom core and
electrons surrounding the core. These charged particles experience forces when
electromagnetic fields are present, causing them to move in response to the fields.
Consequently light propagation inside materials becomes a combined phenomenon of
charge motion and field oscillation, changing — among other things — the speed at which
light moves through the material.

A large part of light-matter interaction can be understood in terms of a property known as

polarization ﬁ(C/mz), representing the dipole moment per unit volume. Polarization inside
a material develops due to forces on the electrons and the atom cores in the presence of an

13



electromagnetic wave. An electric field E tends to move the positive atom core in one
direction and the electrons in the opposite direction. The atom core is several orders of
magnitude heavier than the electron and therefore moves much less than the electrons, so
the movement of the core is usually ignored. The small displacement » of the electrons
relative to the atom core corresponds to a dipole moment

d(t) = q,7 = —er (2.15)

with g.=-e the charge of the electron. If the material contains N(m™) of such electrons per
unit volume that all respond in the same way', the dipole moment per unit volume simply
becomes

P = —eN? (2.16)

The electron displacement is typically less than a millionth of the atomic diameter,
depending on the field strength, but as we will see in Chapters 5 and 6, the combined effect
of the many electrons in typical solids still has a significant effect on light propagation.

In principle the polarization response of materials to an arbitrary applied field can be
complicated. For example, while the electrons move in response to the field, the
polarization can have a different time dependence than the electric field, or even a different
direction than the applied electric field. This makes it challenging to find solutions to
Maxwell’s Equations inside materials. However many materials are isotropic, in which
case the electrons move along the field direction, and thus polarization points along the
same axis as the electric field. Moreover, electrons are very light and consequently they
can accelerate rapidly (recall F=m-a), i.e. they respond very quickly to the field. In the
simplest possible model we might expect that the dipole moment related to the movement
of tightly bound electrons is linearly dependent on the applied field strength, according the
following relation:

P(t) = eoxsE(0) (2.17)

where y is a unitless scaling factor. This is not a general relation. It is an approximate
relation that assumes that the electron response is instantaneous, meaning that the dipole
moment appears immediately when a field is applied, and /inear, meaning that doubling
the electric field doubles the magnitude of the dipole moment. Nevertheless, these
assumptions are helpful in beginning to understand the effect of polarization on light
propagation.

The unitless quantity y is known as the electric susceptibility, where the subscript &
indicates that its use in this time dependent relation is appropriate for instantaneous
response only. We will derive a more general expression for y in the next chapter. The
vectorial notation including a scalar (non-tensorial) x is only allowed in isotropic media.
Despite all these assumptions and approximations, this relation actually represents quite a
reasonable description of the response of transparent media excited at frequencies well
below any absorption band. Next, we will discuss the effect of instantaneous polarization
on wave propagation.

i This is a bad assumption in general, but a somewhat reasonable approximation when we focus on the
response of the outermost electrons, known as valence electrons, as discussed in Chapter 5.
' We will discuss what happens when we go beyond these approximations in Chapters 3 and 8.
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Wave propagation in a lossless medium

Previously we found that Maxwell’s equations in vacuum allow for transverse
electromagnetic waves propagating with a phase velocity c. In the presence of matter (free
electrons, atoms containing protons and bound electrons), two things change about
Maxwell’s equations. First, the divergence of the field may become nonzero:
v.E=L (2.18)
€o

Here p(C/m?) is the total charge density. Inside homogeneous isotropic neutral (uncharged)
materials the charge density remains zero, even when excited with light, so we will
continue to use V - E = 0. Nevertheless, it’s important to realize that this is not generally
true. Second, the relation describing the curl of the magnetic field changes as follows:

- dE _ 9P
VXB=EOMOE+HO[])’+ VXM+E] (2.19)

The newly introduced terms between the square brackets are ‘matter’ related terms: free
electric current density J; magnetization current density V' X M , and polarization current
density aP /0t. This equation directly shows how electromagnetic waves inside materials
are different from those in vacuum. The added terms thus represent ‘light matter
interaction’. In this text, we discuss the polarization current density caused by light-
induced charge motion’, which we will model in Chapters 5 and 6.

To understand the effect of polarization on light propagation, we again onsider the wave
equation. In the absence of magnetization and free current density, we have

. 0B
VXE=—— (2.20)
dt
. OF aP
ety 2.21)
VX B =€l 3¢ THo5;

Taking the curl of the top equation and the negative time derivative of the bottom equation
as we did before, we find

- 0 =
VxVsz—a(VxB) (2.22)
] S 02E  9%P
Comparing these two relations we see that the following is also true:
, 02E  9%P

i Note that the equation doesn’t limit us to only light-induced polarization. For example, shooting an electron
through a thin piece of material will also cause charge motion, producing polarization and a field response
that can in large part be described by Maxwell’s equations.

15



Again using the general vector relation V X (V x F ) = —VF + V(V -F ) we have

, , 02E  9%P
—V2E+V(V-E) = —eoo Sz Mgz (2.25)

Recall thatV - E = p/€o. Now that there are charges present (electrons, protons) we cannot

generally state that V - E = 0 inside materials. However, when dealing with homogeneous
isotropic neutral materials excited with light, the resulting fields remain divergence-free.
Under these assumptions we have obtained a similar wave equation as for the case of
vacuum, but with an additional term related to polarization:

-

- 0 (, P
VZE = EOMOW<E +E_> (226)
0

This relation still properly describes materials with a realistic non-instantaneous and even
possibly nonlinear and anisotropic response. In materials with a linear, isotropic, and

instantaneous polarization response we can use our simplified expression ﬁ(t) =
eoxsE (¢), giving

92E
ot?
This relation states that electric fields that oscillate quickly (large double temporal
derivative) must have large curvature in space (large double spatial derivative), i.e. must
have short wavelength. In addition, it shows that a higher susceptibility (larger response of
electrons to the electric field) also results in a shorter wavelength. Like the case of vacuum,

this relation allows for plane-wave solutions, however with a modified phase velocity. We
again substitute a scalar plane wave of the form

E(t,z) = E, cos(kz — wt) 2.1

V2E = eopto(1 + 1s) (2.27)

into the scalar wave equation, giving

62
V2(E, cos(kz — wt)) = €ouo(1 + xs) 32 (E, cos(kz — wt)) (2.28)

The double spatial derivative on the left adds a factor -k* while the double temporal
derivative on the right adds a factor -@*. Dividing out common terms on the left and right
results in the following dispersion relation linking ® and k:

w S ¢ (2.29)

p =
k v/ 1+ Xs
Note that the solution with the negative sign is again omitted, since it simply represents a
wave propagating in the opposite direction. If there is no polarizable material (meaning
¥=0) we reproduce the result of light propagation in vacuum at a phase velocity c. If on the
other hand light is propagating inside a material with nonzero 7y, we find that the speed of

the wave is reduced by a factor ,/1 + ys5. The wavelength is also reduced:

w w

c
— = = > A=
kK~ 2n/2 [it1,

2mc 1 _ AO
w \/1+)(5 \/1+){5

(2.30)



We see that inside a polarizable material, both the speed of light and the wavelength are
reduced by the same factor /1 + ys. This quantity is known as the refractive index n. For
this somewhat unrealistic case of instantaneous response, we have

c A A
" E;' 1 0 Ao (2.31)

c
e s T

We see that our trial plane wave with perfectly constant amplitude is an allowed solution
to the wave equation. This corresponds to a wave that propagates ‘forever’ without losing
amplitude. Apparently a material with instantaneous polarization response is entirely
lossless. In the next Chapter we will consider a more realistic case, allowing for a finite
response time for the electrons, and we will see that a material with non-instantaneous
polarization cannot be lossless.
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Chapter 3 - Light propagation in dispersive media

» Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html

In the preceding Chapter we described light propagation in a material with instantaneous
response, and we found an expression for the refractive index that did not depend on the
frequency of the light. This is a reasonable approximation in transparent materials in a
limited spectral range, but it is not generally applicable to realistic materials. In the
following we consider materials in which polarization takes some finite time to build up in
response to a field, which will result in a frequency-dependent complex refractive index
and non-zero absorption.

Time-dependent susceptibility — the impulse response

As discussed in Chapters 1 and 2, applying an electric field to atoms in a material results
in the appearance of dipole moment as a result of the electric force on the electron. In
Chapter 2 we assumed for simplicity that bound electrons respond instantaneously to the
field, meaning that the dipole moment would be perfectly in-phase with the electric field.
In reality, an electron once pushed will keep moving for a while, meaning that charge
motion (and dipole moment) can be changing affer the force was applied. As an example
in the sketch below, after briefly pushing an object, we might see some oscillatory motion
after the push. In this case the position is clearly not linearly proportional to the force.

€w
()

Figure 3.1

To describe a time-dependent response to a time-varying field, we consider a time-
dependent susceptibility' y(t). This function represents the response to a single short (read:
“delta function”) electric field pulse, and is called the ‘impulse response’.

We can understand the concept of a y(t) function as follows: after a short electric pulse
E(t), electrons in the material will have acquired some velocity that follows from the
integration of their acceleration. For electrons initially at rest, the velocity after the short
pulse is thus

t t t
v(t) = fa(t’)dt’ = J-wdt’ = —mi fE(t’)dt’

We see that the electron velocity after a short pulse scales with the time integral of the
electric field. After the short pulse the electrons will keep moving until the material slows

! After Chapter 4 we will exclusively work with the fiequency dependent susceptibility y(w), but it is helpful
to understand how y(t) and () are related.
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them down. The resulting time-dependent charge movement and associated dipole moment
will thus depend on the material response (damping that slows down the electrons, binding
forces that pull back the electrons), which can be represented by a time-dependent
susceptibility (t) (s).! In general, to determine the polarization at some arbitrary time ¢,
we would need to know all driving forces that the electrons experienced at all earlier times.
Mathematically this can be written as:

P(t) =€ me(t’) x(t—tdt' 3.2)

Here t' means “when was the field applied”, (t-t”) means “how long ago was that”, and
x(t —t') tells us “should we still expect a response this much later”. Note that the integral
seems to consider electric fields in the future (t*>t). In fact electric fields ‘in the future’ do
not contribute, meaning y(t)=0 is zero for t<0. A response function that is zero for negative
times is known as a ‘causal response’.

In short, we have seen that in a realistic case of electrons with a non-instantaneous response
to fields, we clearly cannot write a simple proportional relation between P(t) and E(t).
Instead we need to carry out a somewhat complicated integral. However, if the material
response is linear, i.e. if doubling the field strength produces double the polarization, it
turns out that we can still find a simple relation between P and E, provided we consider
excitation at a single frequency. The reason for this is that in linear media, exciting the
electrons with a perfectly harmonic (sinusoidal) electric field results in an electron position
(and thus polarization) that is also sinusoidal in time, but possibly with a phase delay. To
describe such a phase-delayed polarization response to a harmonic field, we thus need two
parameters: the magnitude of the response, and the phase delay of the response. This can
be achieved with the use of a complex susceptibility, as discussed below.

Real electric fields as a sum of complex exponents

Before discussing the effect of complex susceptibility, we first introduce the notion of
complex field amplitude. Measurable properties such as the electric field, the polarization,
current, etc. are real quantities (as in “not complex”). A propagating oscillatory real electric
field is described by a real harmonic function such as a sine or cosine, for example

E(t,z) = E, cos(k,z — wt + ¢). 3.3)

Here ¢ is a possible phase offset and E; is a real field amplitude. Although the field must
be real, we can choose to describe this real field with complex numbers, using the general

relation e?® = cos(6) + isin(f) = cos(f) = %(eie + e‘ie). With this relation we can
write our real electric field as

1 ) 1 )
E(t, Z) — EEr ellkzz—wt+e) + EEre—l(kzz—wt+¢>) (3.4)
We can rewrite this as follows:

E(t,z) = %Er elbeilkzz—wt) %Ere‘i¢e‘i(kzz‘“’t). (3.5)

i Since the charge response depends on field strength and on the duration of the pulse, if follows that y(t)
must have units s
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If we define a complex field amplitude E, = E,e'®? we can write our real field as a sum of
complex oscillatory contributions:

1
E(t,z) = 7 Eo eltkzz=0t) 4 ¢ ¢, (3.6)

where c.c. stands for complex conjugate, meaning ‘with the opposite complex phase’
(achieved by changing all i terms to -i). Note that the complex amplitude Eo now contains
information about both the magnitude of the field oscillation (given by |E,|) and the phase
offset @, described by the argument of the complex exponent. As stated earlier, this is
exactly what we need to describe the polarization response of a material with a non-
instantaneous response.

The analysis above helps understand the meaning of complex Fourier transforms of real
quantities. A time-dependent real electric field E(t) cannot in general be described with a
single harmonic wave, but according to Fourier theory it can be described as a
superposition of harmonic functions with different frequencies and phases. The complex
amplitude for all these frequencies is described by the Fourier amplitude E(w). A real field
at some fixed location z can thus be written as

E(t) = f E(w) e~ “tdw (3.7)
Note that we don’t explicitly have a complex conjugate term anymore. Instead this term is
captured by including ‘negative frequencies’ in the Fourier integral. To clarify this, note
that the integral above is exactly equal to the following integral over positive frequencies
only:

E(t) = f E(w) e™t + E(—w) ett dw. (3.8)

0

We see that the negative frequency contribution represents the complex conjugate term

which ensures that we end up with a real field. Note that it follows that the Fourier
transform of a real field time dependent field must satisfy the following relation:

E(w) = E"(—w) (3.9)

where the asterisk indicates taking the complex conjugate. This is known as the reality
condition, which can also be written as

E'(w) =E'(—w) E"(w)=-E"(-w) (3.10)

where the single prime indicates the real part, and the double prime indicates the imaginary
part. This is a general rule for the Fourier transform of real time-dependent quantities.

Frequency dependent susceptibility

Now that we understand complex amplitudes and Fourier transforms, we can derive a
simplified relation between P and E in a realistic non-instantaneous material. First we write
all time dependent quantities in their Fourier form, i.e. we use our Fourier description of
E(t), as well as polarization P(t) and susceptibility x(t), i.e. we will use
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[0

P(t) = fP(a))e‘i‘” dw (3.11)
and
x® = [ x@)erdo (3.12)

Substituting these descriptions of P(t), %(t), and E(t) into Eq. 3.2, repeated here with the
integration limits omitted for simplicity of notation:

P(b) = € f E(t) x(t — t"dt' (3.2)

we obtain
J-P(w) e “tdw = € J- f E(w) e‘i“’t’dwf)((w’) e~ (=g dt’ (3.13)

where we have replaced the frequency argument in the Fourier integral of (t) with w’ to
distinguish it from the frequency argument of E (t). Switching the order of integration and
grouping terms that depend on ¢ we get the following:

fP(a)) e @ty = EoffE(w)dw x(w" e‘i“”tf ei(@=0)t' e’ do', (3.14)
The integral [ e{@'~®t" g’ = 2m8(w' — w), giving
fP(w) e~ wldy = ¢, f f E(w)dw y(0") e *' 2718 (0w’ — w)dw'. (3.15)
Integrating over w’ we are left with
fP(w) e Wdy = 2n60f)((w)E(w)e_i“’tdw. (3.16)

In this expression and the preceding ones, x(w) always represented the Fourier transform
of x(t), also written as F[y(t)]. The relation above needs to satisfied for arbitrary
distributions E(w), which in turn implies that it must be true for each separate frequency
component.! We have arrived at the relation

P(w) = €y (2nF[x (V)] ) E (w). (3.17)

The entire quantity 2wF[x(t)] is commonly written as y(w) even though it’s not strictly
speaking the Fourier transform of y(t). In practice this rarely leads to confusion, since
frequency dependent response is usually measured or modeled, rather than being
determined from a measured time-dependent susceptibility. With that convention in mind,
we have found

i This can by shown formally by Fourier transforming both sides of the equation, e.g. replacing frequency
arguments left and right with ®” and ®’’, and doing a Fourier Transform to ® on both sides. This introduces
exponents of the form ei(@w=o"t which act as a delta function, removing the integrals.
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P(w) = €y x(0)E (w). (3.18)

We have derived a linear relation between the field and the polarization, but now in the
frequency domain. Crucially, we have found that y(w) in a realistic causal system is an
intrinsically complex quantity that describes the magnitude of the polarization response, as
well as the phase delay of the polarization response relative to a harmonic excitation field.
The sketch below shows an example: a harmonic driving field induces a harmonic
oscillating polarization. The polarization appears with a phase delay with respect to the
driving field. This means that the phase argument of P(w) needs to be different than that
of E(w). This is captured by the phase argument of y(w).

ew P il g
?ﬁ'} /_\ - - >
Figure 3.2

In short, we see that in a realistic material, the susceptibility automatically becomes
complex. This behavior is unavoidably accompanied by absorption, as discussed below.

Wave propagation in a material with complex susceptibility

We previously found the scalar wave equation which describes wave propagation inside
homogeneous, isotropic materials:

VE = oty o (£ + 2 6.19)
= €olo 9¢2 e .
We try solutions of the form
E(x,t) = f E(w)eikoX=0) g, P(x,t) = f P(w)elkox=wt) gy, (3.20)

Here k,, is the as yet unknown wavevector required to satisfy the wave equation at for the
field contribution oscillating at . We showed that in linear systems at a given o, P and E
have a fixed phase relation. To achieve this, at a minimum P and E must move at the same
velocity, i.e. they must have the same wavevector. If the scalar wave equation must hold
for arbitrary electric fields, it can easily be shown that it must also hold for individual
frequency contributions inside the Fourier integrals. For real waves described by complex
amplitudes, apparently we must have

2

) ad ] P(w)eikox—wt)
VZ(E(w)eL(kwx—wt)) =EOH0F<E(O))€L(kwx_wt)+ ( )

€o

> (3.21)

Taking the spatial and temporal derivatives and dividing out all shared factors e!(KoX=®t),

we arrive at the relation

—kZE(w) = eopo(—w?E(w) — (UZP((U)/SO) (3.22)
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Now substituting the complex relation between P and E, and simplifying we find'

k(@) = =T+ (@) (3.23)

where we have written k,, as k(®), and where w/c is simply the vacuum wavevector ky =
21 /Aq. We can also define a complex relative permittivity &, as

& =1+ y(w) (3.24)
which leads to the relation
)
k(w) = ?\/sr(w) (3.25)

Comparing with our previous relation k = nw/c, we can also write this in terms of a
complex refractive index, which we will write as 77(w).

k(@) = 27(@) (3.26)

We have found a dispersion relation describing the link between wavevector and angular
frequency. Critically, the susceptibility, dielectric function, and refractive index are all
complex. This means that if we excite a real material at a constant frequency w, Maxwell’s
equations dictate that our plane wave must have a complex wavevector! As we will see
below, this implies nonzero absorption of the wave. Before we analyze absorption, we first
establish the relations between y, 1, and &;.

We have the relation

(@) = Ver (@) =1+ x() (3.27)
The real and imaginary parts of | will be written as n and x, i.e.
n(w) = n(w) + ik(w) (3.28)
The real and imaginary parts of the susceptibility will be written as ' and y"', i.e.
x() = ¥'(w) +ix"(w) (3.29)
Explicitly writing the real and imaginary parts of 1 and % we thus have'
n(w) + ik(w) = /1 4+ x' (@) + ix" (o) (3.30)

Taking the square of both sides and grouping real and imaginary parts, we find
n—kl=1+y =¢ 2nk =g =y" (3.31)

Where we have omitted the frequency arguments for simplicity of notation. These relations
provide a straightforward way to find the susceptibility from a complex refractive index.
Finding the refractive index from a complex dielectric function is more involved. The
simplest way is taking a complex root of &. on a calculator. If that’s not an option, the
following relations can be used:

i We ignore the negative root here, which simply represents a wave propagating in the opposite direction.
ii This still ignores magnetic effects, and assumes that the material is isotropic, homogeneous, and linear.
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n=y(el+e)/2 k=&l -¢&)/2 (3.32)

where the magnitude of &, is simply |&,.| = /&% + £/'2. While these relations are exact,
they may give inaccurate results for k on a calculator in the common case of small
imaginary index (and small absorption). In such cases it is better to use the low-absorption
approximation described in Appendix H. For small absorption (&, = y'’ small) we have

12

. X
nx.e k=~ (3.33)

!
24/ &

In dilute media (gases), both &, and ;" are small, in which case we have

As stated above, a complex refractive index implies that the wavevector, given by k =
nw/c, also becomes complex:

k(w) = k' (0) + ik" (@) = 7(w) (%) — nkg + ixk, (3.35)

where we have again used the free-space wavevector kg = w/c = 2m/4y. A plane wave
of the form

1 )
E(t,2) =5y eltkzz=0t 4 ¢ ¢, (3.36)
with a complex wavevector k = nky, = (n + ix)k, becomes
E(t,z) = %EO el((n+ikoz—wt) | ¢ ¢ = g=Kkoz (%Eoei(”kOZ_“’t) +c. c.) (3.37)

We see that the complex nature of the refractive index results in a position-dependent field
amplitude of magnitude [E(z)|=|Eoe™*?.

Absorption coefficient

The position dependent field amplitude derived in the preceding section implies light
absorption. Propagating EM waves carry optical power, which is described by the quantity
irradiance, representing incident power per unit area (W/m?). Using the expressions for
the energy density in electric and magnetic fields, as well as the expression for the speed'
of light and the ratio between E and B from Maxwell’s equations, it can be shown that a
plane wave with amplitude E carries an irradiance:

w 1
I(W) = EnceolEI2 (3.38)

In our non-instantaneous material, we thus find a position dependent irradiance given by

1 1
1(z) = EnceolE(z)l2 = EnCEo|Eo|2 e 2KkoZ = [ =02 (3.39)

i Technically we need the group velocity in this analysis rather than phase velocity, but in most cases the
phase velocity and group velocity are almost identical.
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where Iy is the initial irradiance at position z=0. The term o is known as the absorption
coefficient, given by

= 2k =22 =20 3.40
(Z—KO—KC—AO (3.40)
Associated with the absorption coefficient is the quantity /e depth d,. or ‘skin depth’ §, a
term that is most commonly used when describing highly absorbing materials such as
metals. The skin depth is the depth d at which the irradiance' has dropped by a factor e,
reaching ~36.8% of its initial value. This occurs when the term az = 1, resulting in

p=t=L ¢ _ 1, 3.41
Ta 2kk, 2xkw  4mk P (34D

The last version of the expression of the 1/e depth provides a convenient way of estimating
the absorption depth based on a given k. If we make the extremely crude approximation
that 4w =~ 10, we easily see that an imaginary index of 0.1 gives a 1/e depth of ~Ao.
Apparently, an imaginary index of k = 0.1 causes most of the incident light to be absorbed
within one optical wavelength. This is a huge absorption coefficient. If you memorize this
single data point, all other values of k are easily estimated: for every reduction of k by a
factor 10 the 1/e depth becomes a factor 10 larger. We found k = 0.1 > d; /. ® 144 s0 it
follows that x =0.01 > d;/, = 104y, and k = 0.001 > d;/, = 1004, etc. This
approximate relation is worth memorizing, because it will help make a quick estimate of
light transmission through thick samples.

Example: if green light (1, = 0.5 um) enters a 1 mm thick piece of glass with a seemingly
small x(w) = 0.0001, we now know that the 1/e depth is about a thousand wavelengths,
or ~0.5 mm. Ignoring reflection losses, a 1mm piece of this glass will thus transmit about
(1/e)* of the incident light (a factor 1/e for every 0.5 mm), resulting in a transmission of
about 14%. Apparently even a ‘small’ value of k = 10~* is enough to produce a very
significant amount of absorption in samples that are of the order of 1 mm thick.

i Note, in electrical engineering the term “skin depth” usually refers to the 1/e depth of the electric field
magnitude, resulting in double the skin depth compared to the values used in this text.
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Chapter 4 — Kramers-Kronig relations

» Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html

In the preceding Chapter we learned that a material with a realistic non-instantaneous
electron response had a complex refractive index, with a frequency-dependent real
refractive index (‘dispersion’) and a frequency-dependent absorption coefficient. This
indicates that absorption and refractive index are related quantities. It turns out that there
is an elegant relation that links absorption spectra to the refractive index spectrum of any
material. This relation is one of the Kramers-Kronig relations. In this Chapter we will
derive several Kramers-Kronig relations, and show some examples of how they can be
used to make predictions about dispersion.

Kramers-Kronig relations for susceptibility

We saw in the preceding chapter that a time-dependent susceptibility can be described as
a frequency-dependent complex susceptibility. The Kramers-Kronig (KK) relations for
susceptibility links the real susceptibility y’(®) and the imaginary susceptibility. To derive
this KK relation we first consider the time dependent polarization, given by

P(t)=¢, [ E(e)y(t—t)ar (4.1)
Tresponse function (linear)

As mentioned before, the time-dependent susceptibility must be ‘causal’, meaning that the
polarization response cannot appear before the field that causes it. This means that the time-
dependent susceptibility must be zero for t’>t :

z(@-1)=0 forz<s'. (4.2)
If we consider a field applied at time t’=0, we have
xt<0)=0

Next, using the step function’ of Heaviside function 6(t) which is zero for t<0 and one for
>0, we also have

x(®) = 6(0)x(¢) (4.3)

We now have a time-domain statement of causality that can be converted to a frequency-
domain statement of causality by Fourier transforming both sides of the equation:

Flx@®] = FO@®)x(®)] (4.4)

The left-hand side is simply the Fourier transform of y(t), which we will write as y(w).
We now have

£ (0)= FO0zO}= [ 007 () a ®5)

i Actually, any function that equals unity for t>0 and equals anything but unity for t<0, will do. For example,
the Signum function which is -1 for t<0 and 1 for t>0 also works.
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To arrive at the KK relation, we will convert the time-dependent susceptibility in the right-
hand side to a frequency domain expression as well. We replace y(t) by its Fourier
composition:

2O)=[" z(@)"do' (4.6)
Substituting this expression into Eq. 4.5 we get

= 2(0)= [ di [ dop () ()" @)
Separating out the terms that do not depend on time we get

x(w) = .[ida)';( (a)’)JidtG(t)e”(“""')’ . (4.8)

The time integral portion is a Fourier transform of 8(t), expressed in frequency argument
(0-»”), which we write as 8(w — w"). We thus have

x(@) == ["doy(e)(o- o) (4.9)

The Fourier Transform of the step function is given by
0(0)=Flo()}= ()

Our integral thus becomes a sum of two integrals, one involving a delta function in
frequency.

(4.10)

= )((a))zJ.Zda)';((a)')%5(a)—a)')+i.|.2da)'% (4.11)

The term with the delta function when integrated over w’ simply becomes % x(w), whicih
we can move to the left-hand side. We thus get

ooy i x(e) 4.12
= 2)(((0)—2”.[@@10) " ( )

(@-a)

We have found a statement of causality in the frequency domain:

= z(0)== j 2@ 4oy (4.13)

>0 -

At first glance this statement doesn’t look very helpful. We can find the complex
susceptibility by doing a complicated integral of the complex susceptibility. But: writing
this relation explicitly with its real and imaginary parts, we will find something useful.

2(@)=z'(@)+ix" (o)

J‘ X (60 o'— 1r° Z"(a")m. (4.14)
@ —' T 00—

This yields two equations :
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2@)=-L1[ 2"(@) 4 (4.15)

T 00—

7" ()= j 4 (“’ (4.16)

>m—-'

These are the “Kramers-Kronig” relations for y(w). If we know the complex susceptibility
spectrum, we can find the real susceptibility spectrum, and vice-versa!

We can use the results of the reality condition, (y’(®) is even, ¥”(®) is odd) to re-write
these integrals in terms of positive frequencies only:

7'(@) _——j‘”wl"(” do' 4.17)

and

za’j Z (“’ o' (4.18)

Kramers-Kronig relation for refractive index and absorption

Based on the relations between  and 1 we can convert the KK relations for susceptibility
into relations that involve index and absorption. The derivation of these relations is easiest
assuming low susceptibility, meaning |y’|, |x”’| << 1. In this case,

n(@)+ix(@) =1+ y' (o) +iy" (@) ~ 1+ z';w) +i75"2(“’) , (4.19)
so that,
no) =1+ 22 = (@) = 2((@) = 1) and (4.20)
@

kK~ y'(w)/2= alw) = ZK% ~ )(”(a))% =>xy"(w)= c— 4.21)

Substituting these expressions for y’ and y'’ into the KK relation for the real susceptibility
we arrive at the Kramers-Kronig relation for index and absorption:

[e%) a(wl)
(1)2

n(w)=1+= f dw' (4.22)
Although this has been derived for a weak susceptibility, it is actually true in general. This

is a very useful relation, as it is relatively easy to measure a(w) over a broad wavelength
band.

Refractive index dispersion near a resonance

It is worth looking at the form of the Kramers-Kronig integrals, to see what they lead us to
expect about the relationship between n(®) and o(w). Let us consider a material with a
single, moderately narrow absorption line. In Figure 4.1 we sketch such a line, where ®res
is the resonance frequency. The refractive index at any frequency o depends on the integral
of a(®”), multiplied by a factor 1/(’? - ®?), so we also plot the function 1/(»’? - ®?) below
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for two cases: one where the frequency, o, is just above the peak absorption and one where
o is just below the peak absorption.

Clearly for > o, the integral of the product is negative which is to say that the n(®) due
to a particular resonance is < 1 for frequencies above that resonance. Similarly, frequencies
below a resonance, the refractive index arising from that resonance is positive. If the
resonance is symmetric, then for @ = s, the refractive index due to the absorption line
will be unity — i.e. the absorption line will not affect the refractive index exactly at the
resonance frequency.
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res res
Figure 4.1

The above observations are generally true, regardless of the precise shape of the absorption
resonance. Certainly, the exact shape of o(w) will affect the precise shape of n(w), but
here we are only talking in generalities. It is also important to note that we make no
assumptions about the physical process giving rise to the absorption line, as it is irrelevant
to these general observations. — There can be no exception to the Kramers-Kronig relations.
— If there is an absorption line in a material, then it will cause the refractive index to be
increased below resonance and decreased above.

Usually, a material will have several absorption resonances, which may occur in the
infrared, in the visible and in the ultraviolet. At very low frequencies, say in the far
infrared, which lie below all resonances, the index may therefore be quite high, as all
absorption resonances contribute positively at these low frequencies. We can also conclude
that at very high frequencies, say in the ultraviolet, for which all resonances are at lower
frequencies, the refractive index must be below unity. This last fact is not widely known,
but as we see from our analysis, it is inescapable and must be true for all materials. As we
examine different types of materials and physical processes that give rise to light-matter
interactions, we will see again and again that these general predictions that come from the
Kramers-Kronig relations are always fulfilled.
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To get a general spectrum of n(w), (usually referred to as the dispersion of n) we just
calculate the result of the Kramers-Kronig integral repeatedly for many values of ®. The
result for n(w) for the absorption line shown in Figure 4.2, where we have arbitrarily
expanded the scale for (n-1) to show it on the same scale as a(®).

Derivation of Kramers-Kronig relations by Cauchy’s integral theorem

It turns out that the KK relations for susceptibility can be readily derived using the Cauchy
integral theorem. We start from the frequency domain expression' for the susceptibility:

2(@)=[" y(@)e'ar. (4.23)

Since causality demands that y(t < 0) = 0, we can change the above integral to only
consider positive times:

@)= [ 2@ (4.24)

Next, we consider the same integral, but allow ® to be complex, with notation w=w'+i®".
This seems problematic, since the definition of our Fourier transform only includes real
frequencies. We will find that mathematically this does not cause problems. Substituting
complex @ we obtain the relation

2(@)=["x () e dr - (4.25)

Note that the factor " is a smoothly varying analytic function in the complex plane, as
is our susceptibility. Next, we use Cauchy’s integral theorem, which states that the closed
path integral of an analytic function yields zero. We thus must have

£ ;(Cf)w)gw ’ (4.26)

i Note, this susceptibility is the direct Fourier transform of y(t), whereas given our choice of FT definition

the commonly used y(w) in P(w) = €ox(w)E (w) includes an extra factor 27, see Chapter 3. This makes no
difference for the end result.
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where C is a closed path in the upper half plane of ® that avoids all poles (singularities), as
shown on the next page.

A

'
- sax:

ol

v

Figure 4.3

We can look at the four main parts of the integral. First, the large semicircle, defined by ®
= Ae®, where 0 runs from 0 to m. In the limit as A — oo, this part of the integral becomes
zero, provided that y(w) is reasonably well behaved, or more specifically, provided that

hm[l(“’)} —0- The small semicircle is centered on a pole caused by the 1/(®»-Q) term. By

@—>0 @

the Residue Theorem, in the limit of vanishingly small radius, €, we have,
;((a))da)
j —iy(Q), (4.27)

(i.e. a “half-residue” of the integrand at €).) The straight sections of the integral, in the
limit of € — 0, become;

lim { J. Z(a’)dw J- ;((a))da)} J‘Z(a))da) (428)

c—0

where ¢ denotes the Cauchy Principal Value. Hence the sum of the four parts of the path
integral becomes

0—izy(Q)+p IM -0, (4.29)
s 0—Q
1.€.
)((Q)—— [2(@)de =0, (4.30)
ir Y o-Q
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which is the Kramers-Kronig relation as previously derived. This is basically just Cauchy’s
Integral Theorem. (The principal value (¢o0) label really just means that we should avoid
the pole, but in practice, this turns out to be trivial, so we will not continue to use .)

The above analysis is less physically insightful than the one given before, but this is the
treatment usually given for Kramers Kronig relations in most texts. It is also convenient
to use, since any causal function that is analytic in the upper-half plane can be treated in
the same way, and this can save some time in deriving Kramers-Kronig relations. This is
the case for the relations between the amplitude and phase of a reflected wave, which we
discuss next.

Kramers-Kronig relations for Reflected Amplitude and Phase

There exists a very useful type of Kramers-Kronig relation that relates the phase and
amplitude of reflection from an interface. Now the reflectance,

R(w) = r(0)r*(w) (4.31)

Where r(®) is the electric field amplitude reflection coefficient, which for an air-material
interface, is given by

l-n(w)—-ix(w) . (4.32)
l+n(w)+ix(w)

r(w) =

Now we can also write r(®) in terms of a phase and an amplitude:
r(w)=p(w)e”, (4.33)

where 0(w) is the phase shift upon reflection. (Note — this is NOT the unit step function,
0(t), used earlier.) Clearly, if we can completely determine both r(®) and 6(w), we can
completely determine both n(w) and x(w). Now, it is relatively straight forward to
determine R(w), but it is hard to imagine how we could easily measure 6(®) over a large
spectral range. We would like to find a Kramers-Kronig relation that relates 6(w) to p(w),
but we note that while we can do this for complex analytic functions of the form y(®) =
1’ (@) +H x”(0), or n(®) =n(m) +1ix(w), we cannot do so for a function of the form r(w) =
p(w)exp(iB(w)). — We could always find a Kramers-Kronig relation between r’(®) and
(), but this is of no particular use, as we cannot easily individually measure either the
real or the imaginary part of r(w). However, if we take the /og of r(w), we get

ln{r(a))}:ln{p(a))}+i6’(a))’ (4.34)

for which, via the Cauchy integral theorem, we can write down a pair of Kramers-Kronig
relations:

In{p(e)} = —i fw —Q(ZV_)ZWV

B N (4.35)

() _1 J-ln{p(a) )}da)
T

O]

—00
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where, as usual, the “principal value” of the integral is to be taken. Clearly the second of
the two relations is the more useful, in the same sense that the relation that gives n(®) in
terms of o) is more useful than one that gives o in terms of n. — It is much easier to
measure amplitudes than phase. We can re-write this integral in terms of positive
frequencies only:

() - 22 [ Inip(@)ide’ (4.36)
, 0" -

Note that our previous approach of applying causality in the form of a step function in the
time domain is not valid in the same way as for y, as for t <0, p =0 gives In p = -0, which
is not so easy to handle. For the same reason, one might look at this integral and conclude
that it probably will not work, as for regions where R(w) — 0, In p — -o0. Nevertheless, it
still seems to work, as we shall see from the homework assignment. Those who are
interested may read the details in Wooten, but the scope of this course is limited to the
results.

There is a useful trick to remove the singularity at ® = ®. We may simply subtract the
quantity

Z_Q’TW 2o {p(w)}jﬂzo (4.37)
Ty o'-o T -0’
from the integral in the KK relation. Hence
() = 20 T [ln{p(a)')}—ln{p(a))}]da)'
T a) a)
. (4.38)
jln R(w )/R(a))}da)'
Vi

0

Hence as ® - ®’, R(0’)/R(w) — 1 and hence In{ R(w’)/R(w) } — 0. We can apply the
L’Hopital rule to see that the divergence is removed.
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Chapter 5 — Lorentz model of the optical properties of dielectrics

» Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html

In Chapter 3 we learned that optical effects such as reflection, transmission, and absorption
are related to the refractive index, which followed from the complex susceptibility. This
means that we can make a prediction of the optical properties of materials if we can develop
a model for y (). In this chapter we will discuss the optical response of materials that have
a strong absorption at one or more well-defined frequencies. We will first derive the
response of a simplified atom using what is known as the Lorentz model, which describes
the electrons that surround atoms as being bound to the atom core with a phenomenological
spring constant. It gives a fairly realistic prediction of dispersion of the refractive index in
regions of low absorption, and an approximate understanding of n and « trends near strong
absorptions.

Classical Lorentz oscillator model for absorption & dispersion

Atoms consist of a positive atom core containing protons (charge per proton +1e) and
neutrons. The total electric charge of the atom core is +eZ where Z is the atomic number
Z. The atomic number of most commonly used materials ranges from 1-100. A neutral
atom is surrounded by a total of Z electrons. These electrons are bound to the atom core by
Coulomb interaction forces, orbiting the core with a spatial distribution described by
quantum mechanics. For atoms with large Z, some of the electrons are bound very tightly
to the core, called core electrons, orbiting the cores at small distance. Other electrons
occupy larger orbits, circling the positive core and its tightly bound core electrons.
Consequently, these outer electrons experience a smaller net positive charge from the core,
and therefore smaller Coulomb binding forces. The outermost electrons that finally make
the atom neutral are called the valence electrons. These electrons ‘see’ the least attractive
force, and are therefore easiest to move. As a result, the valence electrons often account for
most of the polarization response of atoms.

Atom E_'v Atom in E-field
- + -+ - ELE #
+@+ + @+ l
| + + = o ey T
Figure 5.1

The Lorentz model takes all these elements to build the simplest possible mechanical model
of an atom. This model makes several key assumptions. First of all, it assumes that
movement of the atom core can be neglected, which is reasonable given that the core mass
is well over three orders of magnitude larger than the electron mass. Second, the Lorentz
model considers only the valence electrons, assuming that the core electrons are so tightly
bound that the electromagnetic wave is practically unable to move them (‘no core electron
response’). Third, it assumes that valence electrons are bound to the core in an effectively
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harmonic (quadratic) binding potential. This somewhat reasonable: without an applied
electric field the electrons are in a steady state around the core, and therefore in a minimum-
energy configuration. Moving the electrons out of equilibrium will result in a restoring
force that tries to bring the electrons back into equilibrium. The Lorentz model assumes
that this restoring force is linearly dependent on the displacement from equilibrium 7, a
relation known as Hooke’s Law:

F, = —K7? (5.1

Here K is the ‘spring constant’ (units N/m) in analogy with the classical mass-on-a-spring
model. This linear force response implies that the potential energy increases quadratically
with increasing position, which is called a ‘harmonic’ binding potential. Fourth, it assumes
that the atom responds isotropically and along the applied driving force, which allows us
describe the electron position with a scalar (t), the distance from the core.

Before investigating the various forces that determine the electron motion, we first rewrite
the spring constant by considering the response of the electron without an external electric
field. Newton’s second law of motion states that F = m a = m . In the absence of any
external driving forces this predicts that the position » of a valence electron will behave as

F(t) = K 5.2

P#(t) = m r (5.2)
with m. the electron rest mass. This type of relation can be satisfied by oscillatory functions
of the form r(t) oc sin(wt) or r(t) oc cos(wt), or' r(t) o« exp(-iot). Substituting a trial solution
of the form r(t)=r, exp(-iwt) with o related to the motion amplitude we find

K . K
=——T e”lot o )= [— (53)

e me

#(t) = —w?ry e 10t

The see that the valence electron in this simple model has a natural oscillation frequency
which we will refer to as ‘the resonance frequency’, labeled as wo. We have thus found a
relation between the spring constant K and the resonance frequency:

K = mw} (5.4)

In many of the upcoming equations we will write the spring constant K as mw3.

As in any realistic physical system electron motion will not continue forever. The electron
motion is said to be ‘damped’, with the electron gradually losing energy as it oscillates,
leading to a reduced amplitude over time. In the Lorentz model this is phenomenologically
described by a ‘friction force” Fr corresponding to momentum loss at a rate I" (units s!) :

Fi) = d(mv(®)) (t))

—-T'(mv(t)) = Fr=-mTi(b) (5.5)

In reality this ‘friction’ represents many possible causes of loss of motion, for example
random collisions with other atoms, coupling to vibrations in a crystal (‘electron-phonon
coupling’), emission of light (‘radiative relaxation’), energy transfer to other electrons
(“electron-electron interactions’ including effects such as Auger relaxation), to name a few.

i The exponential expression leads to a complex amplitude, which can be turned into a real amplitude by also
considering an oscillatory term with the opposite angular frequency, as shown in Chapter 3
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To predict the optical response of valence electrons in the presence of an oscillatory
electromagnetic field the Lorentz model only considers electric forces given by

F,(t) = —eE(t) (5.6)

where e is again the electric unit charge. The electron response follows from the equation
of motion F=ma taking into account the electric driving force, the friction force (damping
rate), and the restoring force. The total equation of motion thus becomes

m#(t) = —eE(t) — mI7(t) — mwj r(t) (5.7)

In a linear system we expect that driving at single frequency o results only in responses
that occur at that same frequency. We can assume a real electric field E(t) of the form

E(t) = %E(a))e‘i‘"t +c.c. (5.8)

and assume that the electron position occurs at the same frequency, described by:

r(t) = %r(a))e‘i‘"t +c.c. (5.9

We substitute a trial solution containing only the positive @ contribution.! After dividing
out common terms on both sides, this results in:

—mw? r(w) —mlior(w) + mwé r(w) = —e E(w) (5.10)

This leads to an expression for the (complex) harmonic motion amplitude r(®) in response
to a harmonic driving field with amplitude E(®):

e 1
rlw)=—— —————"""—Ew 5.11
(@) m, wé — w? —ilw (@) 1D
We can now find an expression for the dipole moment p, which is defined as charge times
separation distance. Since the atom core is assumed to be stationary at position zero, the
dipole moment becomes simply q.r = -er. The Lorentz model thus predicts an oscillatory
dipole moment with amplitude

2
e
w)=——-7——""Ew 5.12
Hw) me wf — w? —ilw (@) (-12)
Before we convert this expression to polarization, it’s helpful to look at some limiting
behavior. The Lorentz description of the dipole moment of a valence electron on a single
atom reproduces several properties that were already predicted in Chapter 1. For example:
at very low frequencies (o — 0) we see an amplitude

e? 1

e Y0

Note that p(0) that is real and positive, which means that the dipole moment is in-phase
with the driving field. This is expected: Hooke’s law in constant field leads to equilibrium
when F. + F; = 0, leading to a fixed dipole moment linearly proportional to E. Also note

i The corresponding negative frequency component follows simply by exchanging —w for each @ term.
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that this static dipole moment depends inversely on w¢®. This also makes sense: we saw
that K « w3. If the spring is twice as stiff, the same force will yield half as much electron
displacement, and thus half as much dipole moment.

As the excitation frequency increases the term w3 — w? initially reduces, the magnitude of
the denominator drops rapidly, corresponding to a larger magnitude of p. This is something
we predicted in Chapter 1: for excitation near resonance we expect larger motion
amplitude. As we approach o the imaginary contribution —il'w in the denominator
becomes more significant. Since the numerator in the expression for the dipole moment is
real, the complex nature of the denominator includes all phase information about the dipole
response relative to the driving field. When we excite on resonance, i.e. when we use ® =
o we find

e? 1 e? i

p(wo) = —— E(w) = m—emE(w) : (5.14)

Note that our time dependent field for positive ® was described by a field contribution of
the E (w)e ™' corresponding to a clockwise rotating complex vector. We see that when
this field contribution is positive and real, the dipole moment is entirely imaginary,
corresponding to a 90° phase delay relative to the driving field. Also note that small
damping (small I') results in large dipole moment on resonance, as expected.

When we excite at high frequency with @ >> I, we see that

e? 1
plw - o) =—-—— —E(w) =0 (5.15)

m, w
We see that the dipole moment is in anti-phase with the driving field, and the dipole
moment vanishes as the frequency increases. We have found that bound electrons do not
produce much polarization at high frequency. This is the reason why materials become
transparent at sufficiently high frequency: when illuminated at sufficiently high frequency,
none of the electrons (neither the valence electrons or the core electrons) can respond
significantly, and therefore there is little absorption or refraction. Indeed, sufficiently high
energy X-Rays can propagate freely through most materials.

We sometimes describe the ability to generate dipole moment with a quantity known as the
polarizability o.. This links dipole moment and driving field according to u = a E, resulting
in an expression for the Lorentz polarizability o

e? 1

alw) =—

O B S — 5.16
Me w2 — w2 — iTw (>-16)

Note that here we assumed an isotropic response, which is reasonable for isolated atoms.
If we describe the electronic polarization of molecules we often find that the polarization
is not exactly aligned with the driving field, necessitating the use of a polarizability tensor,
however in most of this book we will deal with isotropic responses that are described by a
scalar polarizability. Be careful not to confuse the polarizability o with the absorption
coefficient a.
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With our expression for dipole moment we can now easily derive an expression for
polarization, or dipole moment per unit volume. With N atoms per unit volume, the net
dipole moment per unit volume is

P(w) = Nji(w) = Na(w)E(w) (5.17)

This assumes that the atoms respond isotropically. For isotropic mixes of anisotropic
molecules one has to do orientational averaging, see for example Chapter 11 on the optical
response of molecular liquids.

With the Lorentz expression for polarization Na(w)E(w) with the relation P(w) =
€ox(w)E (w) we have obtained an expression for the frequency dependent susceptibility:

Ne? 1
Me€y Wi — w? —iTw

x(w) = (5.18)

Note that N in fact represents the ‘number of oscillators’, and in this case the number of
electrons that contribute to the resonance of interest. For example, a single atom may have
multiple valence electrons that contribute to a resonance. In this case, N becomes the
number of atoms per unit volume, multiplied by the number of valence electrons per atom.
Remember that atoms may have many more electrons, but that the dielectric response is
often dominated by the outermost (valence) electrons since those are relatively weakly
bound i.e. most easily polarizable. A possible exception is high-frequency illumination:
when irradiating atoms at far-UV and x-ray frequencies, optical resonances related to
excitation of strongly bound core electrons can be observed, however such transitions are
not discussed in detail here.

We have assumed local and macroscopic fields are equal, and have ignored spatial
averaging - assumed all dipoles are free to point in direction of field.

. . Ne? . .
Note that i is dimensionless, so that the term ﬁ has dimensions of w?. We set
0

N 2
0 = - em (5.19)
0

For reasons that will become apparent later, ®, is known as the “plasma frequency”. We
can split the Lorentz susceptibility into its real and imaginary parts:

2

a)P
= (@)=
w, -0 —il'w
2 .
_ w, oy - +iTw
o, - -Tw o -0 +iTo
L (5.20)
' _ 2 COO—C()
= Z(a))_a)!’ 2 2 1 2 2
(a)o—a))+Fa)
I'ow

" _ .2
&z (a))—a)p (a)z—a)z)2+l“2a)2
0

See fig 3.1 in Wooten for plots of these quantities.
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Resonance Approximation

We can simplify these expressions near resonance, under the approximation |mo - ®| << mo.
In this case, wo+ ® = 2 wo, therefore

2 2
(a)g - a)z) = [(a)o - a)Xa)O + co)]z ~ (2(00 )2 (a)o - co) (5.21)
Hence, we see that in this “resonance approximation” we have

2

w a, —
' W)~ P 0
2O (=] (12
2 s (5.22)
)
& 7'(0) =

2w, (@, — @) +(T/2)

I is the Full width at half maximum (FWHM) of the imaginary part of y, which has a
“Lorentzian” functional form.

Note the symmetry of the real & imaginary parts. The imaginary part of the susceptibility,
¥ is symmetric about wo, while ’ is antisymmetric about wo. Notice that in the resonance
approximation that y’ appears antisymmetric (i.e. about ® = 0) while x” appears
symmetric. The converse is actually true, as seen before from the reality condition. This
highlights that the resonance approximation is strongly invalid far from resonance.

Real Atoms & TRK Sum Rule

In general, atoms & molecules have several resonances, not just a single one as in our
model. - Quantum mechanically, there are several resonances electronic resonances, and
molecules may exhibit vibrational and rotational resonances also. It turns out that
perturbation methods in quantum mechanics yield a result very similar to the classical one.
We find

Ne? Y S
= )= 5.23
2(@) e mG o -’ —il o 6-23)

o;j is the frequency for a transition between two electronic states with energy difference
ne - Ljis the decay rate for the final state and f; is known as the “oscillator strength”,

which obeys the Thomas-Reich-Kuhn sum rule:

Zf, =Z (5.24)

for an atom with Z electrons. This tells us that the total absorption, integrated over all
frequencies is dependent only on Z. Usually one resonance dominates all others.
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Figure 5.2

The “natural” linewidth is dictated by I'. Recall I is a damping or decay rate, which
corresponds to (1/lifetime) of a state. This could range from kHz to GHz. Often the
electronic states are split into many sub states. In molecules, each electronic state can exist
for many possible vibrational or rotational states of the molecule. Which strongly broadens
the electronic “states” into “bands”. In solids, the electronic levels are broadened into very
broad electronic energy bands. All of these broaden out the optical resonances far in excess
of .

In addition to several electronic resonances, other degrees of freedom, such as atomic
motions, including molecular vibrations, lattice vibrations, molecular rotations, can
interact with the electromagnetic field, producing many resonances over the
electromagnetic spectrum. This is illustrated in Wooten, Fig. 3.2.

Our classical, or quantum, model gives the real and imaginary parts of the susceptibility,
from which it is easy to obtain the dielectric function, & () =1+ y(®). Here e;=¢/¢&ois
the relative permittivity. It is less straightforward, but still not difficult to find expressions
for n(w) and k(w). We start from:

n ()~ K} (@) =¢,'(0)

(5.25)
2n(w)x(w) =¢," (o)
From which we obtain
n(w) = \/ ( g, +e "t ') 526

k(w) = \/% (1/er'z+e,”2 -¢€, ')

Armed with n and k, we can find the absorption and reflectance of the material. Wooten
illustrates this in Figs. 3.3 and 3.4. It is often illustrative to plot n, K, absorption o and R
for different values of wo, ®p, and I'. On the next page is an example, using values of 4, 8
and 1, for each of these parameters, respectively. - These seem like strange, unrealistic
numbers to use, but our expression for y contains only frequencies, so the scale is relative.
However, it is realistic to think of these numbers as photon energies, i, in electron volts
(eV).

Lorentz model for mo=4, w,=8, I =1.
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Figure 5.3

Note the shapes of the curves are as we would expect from Kramers-Kronig relations.
Also note that € drops below zero between o and w,. We can calculate n and k from the
above relations. n is small over the region where ¢ is negative. Above ® , , n gradually
rises to 1. Noting that o = 2 k/c, we have also plotted a scaled version of o, by plotting
2wk, scaled to wp,. Note how a is skewed to higher frequencies. R is large in the region
where n is small, which makes sense, as in the limit of n—>0, R —>1.

Lorentz model for mo=4, ®o,=8, I' =0.3.
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Figure 5.4

As expected, for a smaller damping, I’ = 0.3, the curves are narrower and have larger
maximum values. Above o, n is well below unity. Above w,, n rises, but only in the high-
frequency limit does n approach unity. This is a good predictor of actual materials. -
Above the highest frequency resonance, usually in the deep UV/soft x-ray region, n is
indeed less than unity. Causality is not violated, though. Note that near ®,, € ~0 and hence
n ~ k. The reflectance is much higher and has sharper edges. Note the high R starts around
o and falls near ;. This is because k >> n in the reflecting band. Note « is large above
o even where y” has dropped to a small value.
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T-A-R-T

As described in Wooten, the material has four distinct regions of optical properties,

Transmissive, o <wmo-I7/2,
Absorptive, Wo-I72<w<wo
Reflective, o +172<0<wp
Transmissive o> op

These frequency ranges are approximate. The regions are more distinct for smaller I' and
larger p.

Applicability of the Lorentz model to real materials

(i) Insulators

The Lorentz model works surprisingly well, provided we remember that real materials
correspond to a collection of Lorentz oscillators with different frequencies. The outer, or
valence, electrons predominantly determine the characteristics of the optical properties a
solid. In an ionically — bonded material, e.g. alkali-halides such as KCI, the valence
electrons are quite strongly localized at the negative ion (for KCI, this would be the Cl
atom), and hence the optical spectrum contains some atomic-like features, with many
resonances. As the valence electrons are tightly bound, the resonance frequency is high so
that these materials may have a transparency range that extends far into the UV. This can
be seen in the reflectance spectrum for KCl shown below (taken from Wooten, Ch. 3.) For
these types of materials, the external field and the local field can be quite different and it
is not trivial to calculate the local field. For this reason, the Lorentz model does not give
quantitatively accurate results for ionic materials.

4OL ’ ‘ ]
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Fig. 3.6 The spectral dependence of the reflectance of KCI. The region of transparency
extends to about 7 eV. Above 7 ¢V, there are a number of sharp peaks related to narrow energy
bands and excitons. [From H. R. Philipp and H. Ehrenreich, Phys. Rev. 131, 2016 (1963).]

Figure 5.5
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(ii) Doped Insulators

Doped insulators, for example ions in glass, behave somewhat like the ions would in a gas,
except that the locally strong electric fields of the host materials may distort the spectrum
slightly. Figure 5.6 shows the absorption of Nd** ions in a glass host material.
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Fig. 2.9. Absorption versus wavelength of Nd: glass. (Material: ED-2; thickness: 6.3 mm)

Figure 5.6

Usually, the absorption of the dopant material is in a region of transparency of the host so
that we can approximate the polarization as a superposition of polarizations due to the host
and dopant material. For the case of a single resonant absorption line, we may write

2

w
— _ P
Ptot - Phost + Pdopant - ‘90 Zhost + 2 2 . E (527)
Wy —o —il'o

where ynost 1s assumed to be real and constant. Hence;

a)2

e(w)=1+y, +—L— 5.28)
( ) ZhAt wg_wz_irw (

Often, we label 1 + ynost as the “high frequency dielectric constant”, €., so that

2

1)
g (0)=6,+—5—F——. (5.29)
W, —o —il'o

The static dielectric constant, defined as &y = &/(0) is therefore given by setting ® = 0 in the
above expression, so that

2

£y =&, +w—‘§ : (5.30)
0

Hence, the static dielectric function of a material is affected by dopants, even though the
resonant frequency for the dopant is far away from o = 0.
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The absorption cross-section

When a material contains a small amount of distinct atoms or charges such as a small
concentration of optically absorbing atoms or free charges, the absorption per atom (or
charge) is often expressed in terms of an absorption cross-section. The absorption cross-
section Gaps 1S the physical cross-section of a perfectly absorbing disk that would produce
the same absorption as the atom. The absorbed power by a single atom can thus be
described by

Paps = Oapsl (5.31)

with I the incident irradiance. When a transparent material is doped with a small
concentration of N absorbing atoms per unit volume, there is a simple relation between the
absorption coefficient and the absorption cross-section, given by

a = aabsN- (532)

This relation can be easily understood under certain simplifying assumptions. A thin slab
of the doped material with thickness Az contains NxAz absorbing atoms per square meter.
Each of these atoms contributes an absorbing area of size Gaps. The total absorbing area in

the thin slab is thus 6. N Az. The fraction of irradiance lost per distance Az is thus Gabs N.
Considering infinitesimally thin slice with thickness dz we can write this as a differential
equation:

dl dl
@ = —O'abSNdZ = E = _aabSN I(Z) . (533)

The solution to this type of differential equation is
1(2) = I, e %absNZ, (5.34)

We see that a concentration of N absorbers each with a physical size of caps leads to an
exponential decay of the irradiance, described by an absorption coefficient @ = ag,;sN.




Chapter 6 - Drude model of the optical properties of metals

» Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html

The dielectric function of the ideal free electron gas

We can extend the Lorentz model to metals, in which case, since the electrons are unbound
or "free", they experience zero restoring force and hence the resonance frequency, m¢® =
K/m is also zero. This is known as the “Drude” model. The equation of motion a free
charge is

mETO L 7O g 6.1)
ot ot

which has solution

~ e E (w)
H@)=—7—5— ) (6.2)
m\o +il'w
We can again convert position to dipole moment by using p(w) = —er(w) , convert this

to P(w) = Nu(w), and compare it with P(w) = €px(w)E (w) resulting in the following
expression for y():

2

(@)=

X)) =————"— 6.3)
o +ilCw (

where once again the plasma frequency is defined by @,” = Ne’/sym. Note that the answer

is (as it should be) equal to the Lorentz susceptibility with wo=0. Splitting this into real

and imaginary parts we find

2@ = 0> —12 (6.4)

] _ 2
z(@)=-o, > +T?

w*+T%’

If we only consider a hypothetical collection of free charges (known as an ideal ‘free
electron gas’) we obtain the following relative permittivity expressions:

1 I'w
[ _ 2 n _ 2
gl@=l-0, s eM@=e, ()
Now, in a metal, the damping term I is just the electron collision rate, which is the inverse
of the mean electron collision time, 7, i.e. [ =1'. Hence,

2_2

2

0’7
e'(w)=1-—=L—, e (w)= L 6.6
(@) l+o’c? (@) ol + 0*7?) (6.6

The collision rate can be quite rapid - tens of femtoseconds, corresponding to damping rate
of the order of 10'* s'!. But for optical frequencies, (e.g. for A = 500 nm, o = 2nc/A =
3.8x10% rad/s) (wz)’ >> 1. Under this approximation, we find
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. @, v P O
g (w)=1-—— &"(w)r——=—F. (6.7)

23
() aT @

It is useful to look at some plots of e(®), n(®), a(®w) and R(w). These are plotted below
for ®,=10 and for I’ = 0 or I' =0.5. In the limit of no damping, the n =0 and R =1 for 0
<o <mp. Above my, k is zero and the reflectance drops as n rises from zero to unity. Note
that even for & = 0, k and hence a is not zero. Introducing some damping causes R to be
<1 and the reflectance drop at w, is less severe. The behavior of &, n and k is consistent
with what we now expect for a Lorentz oscillator with wo = 0.

Clearly, the sharp edge in the reflectance seen at the plasma frequency can be expected to
be the predominant spectral feature in the optical properties of metals.
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Figure 6.1

Note that in real materials we have not only the free charges, but also the core electrons of
the metal atoms. We thus expect the dielectric function of real metals to be a mix of the
response of the bound (core) electrons and the free electrons. However for frequencies well
below the plasma frequency, the free charge response typically dominates the dielectric
function.

Optical absorption in low electron density materials — Semiconductors

Optoelectronic devices are typically made out of semiconductors with small concentrations
of free charges. These free charges can introduce a small amount of absorption, known as
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free carrier absorption. In the following we will derive the typical frequency dependence
of free carrier absorption.

The total dielectric function of such doped semiconductors is given by the dielectric
function of the undoped semiconductor host &,,4, plus a small Drude susceptibility
contribution from the free charges. Assuming a fixed host dielectric constant this gives a
total dielectric function of

2
P 5.35
w? +iTw ( )

w
— 2
Er(w) = €nost T Xprude = Nhost —

The free charges change both the real part and the imaginary part of the dielectric function.
Typically the free charge (or ‘free carrier’) concentration is quite low, resulting in a very
low plasma frequency that lies in the infrared region. This means for many optical
frequencies we satisfy w >> w,, . In this case the real part of the dielectric function of the
semiconductor is not strongly affected by the free charges. In this case we find the
approximate response
ry w?
~ n2 |—P
£r(@ > wy) ~ nZos, + (w) i (5.36)
The added imaginary part can introduce significant absorption. The absorption coefficient
is given by o) = 2xw/c. We also know 2nk = &,"". To use this relation we would need
to calculate the real index of the doped semiconductor, but as argued above the real index
is not changed significantly by the free charges. We can thus use k = &' /2n;,,s:. This
allows us to write
w g o 1T o} 1 T 23
a(w>>wp)=2k?z2 z = P~ =2

—= - ~ - (5.37)
2nhost ¢ Npost € w? + T2 Npost € 1;27

where in the last step we have assumed that w > I', and with A, the wavelength
corresponding to the plasma frequency. The derived A? dependence of o is commonly seen
in semiconductors, where dopant densities are typically in the range of 10'® to 10" cm™ as
compared to ~ 10?2 cm™ in metals. We can thus recognize free-carrier absorption in
absorption spectra by noticing a quadratic rise in absorption as a function of wavelength
below the semiconductor absorption edge (band gap).

Significance of the plasma frequency

The expressions have been written for & rather than for y as they more clearly reveal
something significant about the plasma frequency in this form. Notice that at ® = o,, the
real part of the dielectric constant becomes zero. Hence n(w,) =0, which means the phase
velocity - . A more rational way to describe this is that the wavelength, A = 2nc/no —
o as ® — ®p. This means that all the electrons are oscillating in phase throughout the
propagation length of the material.
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Figure 6.2

Note that as all the electrons are moving together, there is no charge separation
(polarization) and hence no restoring force or sustained oscillation after the field is
removed.

Plasma oscillations

The above figure shows an entirely transverse field (compared to the surfaces of the
material). Should there be a component of the field perpendicular to the surface, there can
be a net surface charge as a result of the applied field.

app

e
+ + + + +

E
4+ — -
Ox Ox
Figure 6.3

The attractive (restoring) force between the surface charges can result in a free oscillation.

For no net charge, (qf = 0) then D = 0 = g¢&E. But E #0, so then
& =& t1ig” =0. Hence, &’=0. Now, P = charge x displacement /volume. Thus

_NeA5x-L
AL
_ﬁ_ Neox

& E= .
€o €

P= =—Nedx

(6.8)
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The restoring force is given by: -eE:

Ne’ 6
_eE =22 (6.9)
So
which is equal and opposite to the acceleration:
0% Ne'ox
m———= , (6.10)
ot €
which is the equation of motion:
0’6 Ne’
S 5c=0. 6.11)
o me,
Hence the resonance frequency for the plasma oscillation is given by
Ne>
= (6.12)
me,

We have found that the plasma frequency has a physical meaning: it corresponds to the
natural collective electron oscillation in a thin metal plate.

Modifications of Drude theory in real metals

The Drude model implies that the only the plasma frequency should dictate the appearance
of metals. This works for many metals — see the example of Zinc (Fig. 3.12 in Wooten.) —
But is does not explain why copper is red, gold is yellow and silver is colorless. In fact the
appearance of these metals is characterized by an edge in the reflectance spectrum, similar
to that predicted by the Drude model, but the problem is that all three metals have the same
number of valence electrons. Also, the calculated plasma frequency for all three should lie
at about 9 eV, - well outside the visible region, so the plasma frequency cannot in itself
account for the colors of Cu and Au.

All three have filled d-shells. Copper has the electronic configuration [Ar].3d'%.4s' , Silver
[Kr].4d'°.5s' and Gold [Xe].4f'*.5d'°.6s'. (These metals are known as the “Noble
Metals”.) The d-electron bands lie below the Fermi energy of the conduction band:
Transitions from the d-band to the empty states above the Fermi level can be occur over a
fairly narrow band of energies, around 7@, = E, — E, which can be modeled as additional

Lorentz oscillator. The combined effects of the free-electrons (Drude model) and the
interband transitions due to bound d-electrons (Lorentz model) influence the reflectance
properties of the metal.
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Hence, & = 1+ Yfee T Ybound. Where &¢ is described by the Drude model (wo = 0), and &y
is described by the Lorentz model. (wo = [Er — Eq]/%.)

Examples: silver, copper, and indium-tin-oxide (ITO)

Silver

The reflectance spectrum of silver shows a strong drop at about 4 eV, well below the
expected plasma frequency. The reflectance also rises again for frequencies just above 4
eV. (See Wooten, Fig. 3.15, shown below.)

It turns out that this behavior is because Silver has a d-band resonance at i®d~4 eV. This
can be determined from experimental data by fitting the Drude model to the low frequency
data, as shown in Wooten, Fig. 3.18.(Shown below.) The difference between dielectric
functions from Drude model and from experiment gives the dielectric function due to the
d-band resonance, €noumd (Written as 8¢® in Wooten.) The effect is to “pull” the &’ = 0
frequency in from 9 eV to about 3.9 eV
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Figure 6.5 Real part of dielectric constant for Silver (from Wooten, Fig 3.18)

This shift in @, means that there is a shift in the free plasma oscillation in silver due to the
d-electrons. This can be explained by noting that the highly polarizable d-electrons will
reduce the electric field that provides the restoring force involved in these oscillations,
illustrated on page 6. A reduced restoring force gives a reduced oscillation frequency. See
Wooten fig. 3.20 for an illustration of how the d-electrons do this.

Copper

The case of copper is almost identical to that of silver, except that the d-band resonance is
at about 2 eV. Now since €’ .. becomes very large and negative at low frequencies, it turns
out that &’vound due to the d-electrons is not sufficient to pull the net ¢ through zero. Hence
€’ becomes small at about 2 eV, but there is no true plasma frequency there. However, the
effect of this is sufficient to cause R to start to drop at 2 eV, but the reduction is gradual
throughout the visible. This gives copper its characteristic red-orange appearance.
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Figure 6.6 (a) Dielectric function of Cu (Wooten, Fig 3.22) (b) Reflectance of Cu (Wooten 3.21)

Tin-doped Indium Oxide (ITO) - a transparent conductor

ITO is a semiconducting material that gives quite high electrical conductivity, yet is
transparent in the visible. It is particularly useful in low-current applications, such as liquid
crystal displays. This is achieved by having a material with low electron density, but those
electrons should be highly mobile, which means they travel through the material with
relatively few collisions. By choosing the right density of tin doping, ITO can be highly
effective. Below, we show the real and imaginary part of & for ITO from a paper by
Hamberg and Granqvist, Journal of Applied Physics, Volume 60, Issue 11, 1986, Pages
R123-R159. The plasma frequency, dependent of the Sn density, is typically around 0.7
eV, which corresponds to A ~1.7um. Due to this, and the free carrier absorption described
above, ITO is not as useful in the near infrared (A > 1 um) as it is in the visible.
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Figure 6.7 from Hamberg and Grangvist, Model (right) from David Tanner, University of Florida
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A more recent study by D. Tanner et. al. at the University of Florida, shows that the
properties of ITO can be well modeled by the combination of Drude and Lorentz models.
Using a model for &, that sums contributions from the Drude model to describe the free-
carriers, and from the Lorentz model to describe bound carriers, which have a resonant

absorption at V=40,000cm” (v =1/A=v/c)or A=250 nm. i.e.

2 2
(4]

b of
6 —5 4 b _ (6.13)
w; -0’ -iT,wo o +il,0

where €, is a background high-frequency dielectric constant, and subscripts, b and f,
correspond to bound and free electrons (i.e. Drude and Lorentz contributions, respectively.
The plasma frequencies and damping times for the bound and free electrons are of course
different. The results of their model is shown below. (Courtesy, David Tanner, University
of Florida.)

Drude conductivity and skin depth

We already took a look at how the conductivity affects the optical properties in a homework
exercise. There we looked mainly at the effect when the free-carrier contribution to the
susceptibility is weak. Since we are mainly considering metals, we will not look at the
effect of charges in the case of good conductors, where the free carrier effects are large.

Recall that the Drude model gave us

|
e (@) =1-0° ——,
(@) P’ +T7?
(6.14)
£ (@)= 0 I'ew
r p a)z +F2
from which we can find the optical constants, n and k from
n(w) = \/% («/8,‘2+5r"2 )+ g"”
(6.15)

K(a)):\/%( lgrvz_i_gruz )_grvz

We can also describe the optical properties of a free-electron conductor in terms of the
conductivity, which can also be determined by the Drude model.

First, we note that the current density is related to the velocity of motion by
j =—Nev (6.16)

and the current is also related to the electric field by, j(w) = ¢E (@) -

Now we already wrote down to equation of motion for electrons in an electric field as

m dzfgt)+mFm:—eE(t)a (6.17)
dt dt
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dr
dt

and noting that v =

m%+mF\7(t)=—eE(t)- (6.18)

Now, I' = 1/t, so that the solution for v is

Fo)=—C— 1 EFw), (6.19)
m l-ior
or,
- . . . NeZT 1 o
Jj(w)=—-Nev(w)= l—ior E(a))‘ (6.20)
=o(w)E(®)
Hence,
o(0)= Nt 1 (6.21)

m l1—-ior

is the Drude conductivity. Setting, o, = Ne’z /m , we have,

o (@) = 1_(’;‘;) — (6.22)

Where o) is the DC conductivity.

Inserting the conductivity into Maxwell’s equations for a medium with free charge carriers
we find that we can write

o(w)

E,0

& () =1+ y(w)+i (6.23)

If we assume that only free carriers contribute to the optical properties, then this becomes,

o) _, .
£, 6‘0(0( —za)r) (624)

we can separate & into its real and imaginary parts to get

e(w)=1+i——=

e (w)=1- i A % (6.25)
’ &ll+a't?) wel+w’c?) '
Now, 0, =Ne't/m = o,/&,= a)lz,r , so that,
ot wr
e (w)y=1- +i (6.26)

1+ w7’ a)(l + 0)212)’
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which is exactly as we obtained before. So now we can estimate the optical properties of
a metal based on the DC conductivity, as an alternative to requiring knowledge of the
electron density.

We will now look at the low-frequency limit of a good conductor. A said before, typically,
T ~ 10’s of femtoseconds, so that if we are looking at low frequencies (far infrared or
microwaves or longer wavelengths) then o << 1! or ot << 1. In this case,

e ()= 1—(012,72,

ot @1 (6.27)
g"(@)y=——=

[0 T

Hence, ¢,">> ¢,', so that,

2
NP L e SR (6.28)
2 @ 2we,

Hence, the complex refractive index under these conditions may be written as

()= To_(1+i). (6.29)
2we

The absorption coefficient is then given by,

o) = 20k _ 2o | o,
c c \2ws,

| o
=2w 0 6.30
2we,c’ (6:30)
=+20,0u,

Now, the irradiance depends on propagation depth, z, as

I(z)=1(0)e “)=, (6.31)
which could be written as
1(z)=1(0)e™", (6.32)

where d(w) = 1/o(w) is a penetration depth, at which point the irradiance drops to 1/e or
0.36 of its incident value. Since this depth is usually very small in metals, it is referred to
as the “skin depth”, which is then given by

S(w) = |—— . (6.33)
20,01,

Bear in mind the approximation (wt << 1) under which this result was obtained. For higher
(mid — infrared, visible, UV) frequencies, this is no longer valid, and we just have to include
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the whole expression for &. Additionally, it was assumed that there are no other
contributions to &, which is not exactly true because of bound electron resonances (i.e.

transitions) at higher frequencies. Should it be necessary, these can also be included in our
models.
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Chapter 7 — Optical Activity and Magneto-Optics

» Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html

In Chapter 3 we derived a scalar wave equation to describe light propagation. We assumed
isotropic electric response, and ignored any magnetization effects. In the first part of the
present Chapter we will see that an oscillating electric field can induce an oscillating
magnetic moment in some molecules. This will require us to consider a vectorial wave
equation. This effect will lead to the phenomenon of optical activity, the ability of
molecules to gradually rotate linear polarization. In the second part of the Chapter we will
see that the application of an external magnetic field along the wave propagation will
introduce an additional transverse force on the oscillating bound electrons. This leads to a
phenomenon known as Faraday rotation, the magnetically controlled gradual rotation of
linear polarization, enabling nonreciprocal optical systems.

Optical Activity

In some isotropic media, (e.g. sugar solution in water) it is found that the polarization of
linearly polarized light is rotated in proportion to the propagation distance.

E -
E -
X
. $ Z
5 z
y
Figure 7.1
ie. E=E,{%cosAz+ JsinAz},

where A is the rotatory coefficient (°/m or rad/m). The effect typically occurs in liquids
solutions of chiral molecules, a special class of molecules that is not mirror-symmetric.
W.T. Kelvin defined chirality as “any geometrical figure, or group of points, if its image
in a plane mirror cannot be brought to coincide with itself.”

A simple example of a chiral molecule is shown below:!

“Left handed” “Right handed”

I In this example the choice on calling either of the two configurations is arbitrary. For real molecules the
choice of right vs. left-handed is linked to the sign of the rotatory coefficient.
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Note that the left molecule contains four different atom types. It is not possible to rotate
the left molecule to make it overlap with the right molecule.

For each chiral molecule there exists a left-handed and a right-handed isomer. These
special isomers are called enantiomers. While they have the same composition (same atom
types, same number of bonds), they may interact differently with left and right handed
enantiomers of other molecules. This is particularly important in biology. For example,
orange peel and lemon peel contain opposite enantiomers of the molecule limonene. These
are responsible for the smell of the fruit. d-limonene smells of orange, l-limonene smells
of lemon. The letter ‘d’ comes from the Latin word dexter for ‘right’, and the letter ‘I’
comes from the Latin word /aevus meaning ‘left’.

oot Poss¥:

d-limonene (orange) l-limonene (lemon)

Figure 7.2

Common table sugar is sucrose, which is a combination of glucose (dextrose - right-handed
sugar) and fructose (levulose - left-handed sugar). The dextrose molecule is shown below:

Figure 7.3

Link between chirality and opftical rotation

An extreme case of a chiral molecule would be a molecule shaped like a helix (‘coil’). For
simplicity, let’s imagine that valence electrons can move freely along the molecule. In the
figure below, we see that an electric field would drive charge motion along the helical
molecule. The resulting curved charge motion is accompanied by a magnetic response, in
the same way that an electromagnet uses current to generate a magnetic field. A helical
molecule (and a chiral molecule in general) can thus produce a magnetic field along the
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direction of the electric field. Such an effect was not considered in the derivation of the
scalar wave equation. In the following we will reconsider the wave equation, but this time
taking into account the possible influence of chiral molecules.

—

E

f]

TC0006
m
=

T

©
ok

6

Figure 7.4

Note that if the molecule were flipped by 180°, the effect would be the same. The is a
crucial observation, as it explains why the effect does not average to zero inside isotropic
media. A solution of chiral molecules will be isotropic, since it contains randomly oriented
molecules. The optical activity is caused by the subset of molecules that are either aligned
‘along or against’ the electric field, while some molecules may contribute less because they
are not ideally aligned.

When optical activity (the ability to rotate linear polarization) is observed in solutions of
molecules, we expect that the amount of polarization rotation is dependent on the
concentration of molecules. To describe concentration dependent optical activity, we use
the specific rotatory power or specific rotation As. It is defined as the amount of
polarization rotation per unit length, per concentration. For a specific rotation given in units

degrees cm?/g the polarization rotation angle 0 after a distance z is thus given by:

2
0) [°] = zlem] - 4, %] € [l

Other common units used for specific rotation are degrees (or radians) per 10 cm / (g/liter),
i.e. with all length units described in units of 10 cm.

Describing optical activity with the vectorial wave equation
As mentioned above, optical activity is caused by electrically induced magnetic moment
on molecules, with an magnetic average contribution oriented along the electric field. To

find this effect from Maxwell’s equations, we need to consider the V x M contribution to
the current.

Recall, B= M [I:[JrM], and

°F . % (7.1)

VxB=uJ+uVxM-+e,u, —
Hy Hy oMo d d

and
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gxE=_98, (7.2)

ot (

_ - 7.3)

_ 0 - OF oP

= —VE=——A3uVxM+eg,,—+ 1, —

o {ﬂo oo di Hy dl‘}

for isotropic media and Jr= 0. Hence.
_ 1 0°E P 0 = .=

VZE—C—zdt—zzﬂodt—z-{-,UOEVXM (74)

So there is a term due to the curl of the magnetization that looks like a contribution to the
polarization. Taking the Fourier transform, we get

[_kz +a’_ij(/€,a,) =~ u,P(k,0)+ u,(—iw)(ik x M) (7.5)
C

— —

kxM

@z - =7
.-.(kz —?]E(k,a))w)zﬂo Pk, w)- (7.6)

now we can compare magnitudes on the right hand side:

o] wr_m o
‘P‘a) P cP

In most cases, this ratio << 1 (see homework), so that if kxM is parallel or antiparallel to
P, we can ignore it. This corresponds to M being parallel to B, as shown below. This case
is not interesting, as ‘IE x M | a)‘ is very small compared to P. (Note that we have assumed

isotropic media, so that E and P are always parallel.)

PIE

Y

QA/A,; i
B*M "
Figure 7.5

However, if M is parallel to P, then kxM is perpendicular to P, as shown below:
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Figure 7.6

Hence the effective polarization, 13€f/ - 13_L/€>< M , has a small component
y o

perpendicular to the applied field. This is what leads to the rotation of the electric field.

Propagation equations for optically active media

Now A = 7, -H ,where 7, isthe magnetic susceptibility tensor.

Vxﬁzaa—? = ikxH =—-iwD > (7.8)

and since the medium is isotropic,

lng:—a)eo n’E

=2, 7

Since M is parallel to E , We may treat it as a scalar when relating M and E. Hence we
may write ym as a scalar:

E:%eon2;{ME (7.10)

kxM=—-e,n’y, kxE (7.11)

- we will take the direction of k as z. Hence we will write & = 2 .

The wave equation therefore becomes

2
(kz —Cc’)—sz—yoa)z € XpE=—1,0" e, 0y, ExE

2 2
(kz—(@j JEH{EJ ;(Mészo
c c

Now, E = Exfc+Eyj/ , so that

(7.12)
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05 2
txE=|0 0 1|=(-E,E.0) (7.13)
E. E, 0

Equating x and y components of the wave equation gives
nw) nw\
c c
nw ? nw ?
(—j IuE. +[k2 —(—j JE =0
c c ’

So for a nontrivial solution, the determinant must be zero:

) (na)jz (na)jz
k= — | Aum
¢ ¢ =0 (7.15)

(7.14)

nw ? nw i
(o) o)
C C

Hence for an eigenmode of the wave equation we have
no\ ’ no '
k*—| — +|— | 75 =0
(7.16)
2

But recall that

2 2

so that plane wave modes k: satisfy
E, =7%FiE, (7.18)

Hence an eigenmode of an isotropic chiral medium is one where ey and Ey are equal and
7/2 out of phase. — i.e. circular polarization. So we can write the eigenmode as

| A
E, :ﬁ(XilJ’)Eo’ (7.19)

where E) is the field amplitude and the + and — case correspond to left-circularly polarized
light (LCP) and right-circularly polarized light (RCP) respectively. These modes have
wavevectors:
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(7.20)
or, k, :(—Q)}HHZM
c
but ym << 1, so,
[ .
k, = (—)n(l +iy, /2). (7.21)
c
Hence the RCP and LCP waves experience different refractive indices:
n, =n(l£iy, /2). (7.22)

Now, at this point, it appears that the ym component of the index is going to give rise to
loss, as it appears to give an imaginary component to n. However, we should recall that
while the electric polarization is proportional to the displacement, r, of charge, i.e. p ace,
the magnetic polarization is proportional to the current, i.e. 71 C er =iwer. Hence for p
real (.7 real), the induced magnetic dipole is purely imaginary. Therefore

Xy = Re{ZM }+iIm{ZM }z O+iIm{ZM} = iy, =-Imy,, . (7.23)
This gives purely real refractive indices:

n, =n(l¥Im(y, /2)) (7.24)

So we now clearly see that the RCP and LCP eigenmodes propagate at different speeds.
To deal with linear polarizations, we use the fact that a linearly polarized wave can be
written as a sum of equal amplitude RCP and LCP components:

. 1 = : E ‘
E, = ) {E+ explilk,z—a1)|+ E_expli(k_z - a)t)]}+ o (7.25)

= % {(z+ ij/)exp[i(lgz —ot)]+ (% - if/)exp[i(kfz - a)t)]}+ c.c.

We can simplify by setting k. k. =" _ i, and k_ -k, = A . Thisyields:
2 c
E,(z,1) = %()2 cos Az + ysin Az){E0 exp [i(Ez - a)t)]+ c.c} (7.26)

From this, we can see that A gives the rotation of the linear polarization per unit length.
Hence A is termed the “rotatory power”, given by

A="%1m{y,} (in°morrad/m). (7.27)
2c
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Zeeman Splitting

Here we are interested in the effect of an external magnetic field, B, on the optical
properties of a medium. (This is somewhat similar to the case of chiral media, except here
the “chirality” is imposed by an external magnetic field.) The general term for the use of
magnetic fields to modify optical properties is “Magneto-Optics”

In general for a medium exposed to an external magnetic field, B:
P=e, > y,E+e, > xi"EB,, (7.28)
J J

where l.j,;Fdescribes the linear magneto-optic effects known as the Zeeman and Faraday
effects. Here, we will consider an isotropic material, so that y; is scalar. We also let B be
oriented along the direction of propagation, i.e. B = BZ. Hence the force on an electron
in the medium is given by the Lorentz force law:

F=e¢E+evxB=eE+evxiB. (7.29)

Now for a general velocity, v = ()'c, v, z') hence,

29 2
Vx2B=|x y z|=(yB,~xB.)0). (7.30)
0 0 B

For a plane wave propagating along z, E= (Ex E, ,O) , so we have 2 equations of motion

for a bound electron in the field:

i+ i+ @Px) = e, +eBy
””(J'}ﬂﬂ'/ﬂoiy): ek, —eBx (7.31)

Since the medium is isotropic, then wyx = ®y = ®o.

Now, a free electron with velocity v perpendicular to a magnetic field will make circular
orbits around the z-axis, as shown in the figure below. Hence free electrons in a magnetic
field would have a resonant absorption at the cyclotron resonance frequency of . = eB/m,
(also known as the “Larmor Precession frequency”). In our case, we have bound electrons,
so we might expect that the bound electron resonance is modified by the cyclotron
resonance.
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Figure 7.7

Now, for electric field components defined by

_1f it
E =5E e +cc.

S , (7.32)
1 i1os
E =3E " +cc
we anticipate the x and y components of the electron motion to be
x=1xe™ +cc
p (7.33)
y=1ye +cc
Therefore the equations of motion become
e e
(— o’ —iyw+w, )xo =—E  +—B(-iwy,)
" m (7.34)
e e
(— o —iyw+ a)(f)yo =—E,,——B(-iwx,)
m m
For convenience, we write D(®) = (@, - & -iyw), so that
e .
Xo = mD () (Exo _la)Byo)
. (7.35)
e
=————I\EF , +iwBx
Yo mD () ( 30 0)

Anticipating circular motion in our solutions, we define an amplitude, Q, corresponding to
such motions:

0, = Xy iy, (7.36)
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1 e

L O (£, +iE,, )-iwBy, +i(ioBx,))

e 1 ewB
= E F—r———
mD(w) " 2 mD(w)
e ewB

= D@ = D) %

N Q(1+ ewB j e

(xo iiyo)

E

" D)) mD(w)
e E.
0, - mD(w) ~ _ e N
+ - ewB m D(w) + < wB
- mD(w)
ie. 0, = ° £y

ma)g—a)z—ij/a)irﬁa)B

(7.37)

(7.38)

Hence Q- corresponds to the amplitude of electron motion for illumination with right (+)
and left (-) circularly polarized light. Note that B = 0 yields the regular result from the

Lorentz model.

The resonance frequencies occur for W’ - & + weB/m = 0, which, under the resonance
approximation, becomes 2a(wy - @) + weB/m =0, giving resonance frequencies for the two

states of circularly polarized light as

eB
w,t—

w +
2m

IR

+

This is known as “Zeeman splitting”
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Figure 7.8
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Faraday Rotation

While the Zeeman effect gives the splitting of the absorption lines for left and right circular
polarizations due to the magnetic field, the Faraday effect is the rotation of polarization far
from resonance due to the consequent slight difference in refractive indices for the two
polarization states.

n()

Figure 7.9
To analyze this, we take the far from resonance approximation:

W} — " >>wy
0. = e/mE, (7.40)
Yo — tewB/m

For w? - w? >> ewB / m , we can expand to first order:

ek, _  ewB
Q.= m(a)g —a)z)(l-'_ m(a)(f —a)z)J (741

Now,

P, =NeQ, =€, y.E,

Ne? _ ewB
h= m(e; —wz)(hr 0 z)j& T

Hence the susceptibility becomes

Nez/eom_Ne3/eom2wB

+
(%22_ a;) (0~ ) (7.43)
nvce

Zi(a)aB) =

=X (0)F B
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where

3 .2
- Ne'w (7.44)
2ne, mzc(a)o2 - a)z)z

is the Verdet coefficient.

The refractive index for left and right circularly polarized light may hence be written as

2nVe B

ni =1+ x(0)F

Hence left and right circularly polarized waves see different refractive indices, which again
leads to rotation of linear polarization, i.e.,

ET (z,t) = %(fc cos VBz + ysin VBz ){E0 exp [i(l;z - a)t)]+ c.c} (7.46)

Highly dispersive materials will have large Verdet coefficients. In practice, the magnetic
susceptibility will also determine how large a Verdet coefficient of a material will be. —
Paramagnetic and diamagnetic materials would actually have Verdet coefficients of
different sign. Full understanding of the Zeeman effect requires a quantum mechanical
analysis. Note that the sign of B gives the sign of rotation of polarization. Compare this
to the case of optical activity where there is no applied field and since the material is
isotropic, the sign of rotation is intrinsic to the material, depending only on the sign of ym.

Modulating
Mwmagﬁ’é“tﬁ field

,Mo‘dﬁﬁt?ng
voltage

“ T | Ceonstant

Polarizer R magnetic field

Figure 7.10 Faraday Cell
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Chapter 8 — Nonlinear Optical materials

» Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html

For very high irradiance beams, the electric field is large enough that the polarization
response, usually written as

P(w) = gx(w)e(w) 8.1

is no longer linearly dependent on the field strength. This is because the electron
displacements from equilibrium are so large that Hooke’s law, F = -Kx, is no longer exactly
true. To examine the effect of a nonlinear restoring force, we expand the polarization into
a power series in E:

P(E)=PW + P@ 4+ PO 4+ =g [xVE + yPE2 + y¥E3 +..]  (82)

Note that we have omitted frequency arguments for simplicity here. In general, new
frequencies are generated, so we will deal with the appropriate frequencies on a case-by-
case basis.

Anharmonic oscillator model

While there is no simple general answer to the polarization response of an anharmonic
oscillator, we can find an approximate response starting from Hooke’s law, and adding the
nonlinear response as a small perturbation. Hooke’s law (F = -Kx) corresponds to a purely
parabolic or ‘harmonic’ binding potential:

V(x) = —[ Fdx = %sz = %mw%xz (8.3)

Note that V(x) here represents the position dependent potential energy of the electron in
joules, not the electric potential in volts. The parabolic description is a good approximation
for small deviations from equilibrium, but the binding potential cannot remain parabolic
for all values of x. A more realistic potential may be obtained from a power series
representation:

V(x) = %mw%xz + %max3 + %mbx4 + .. (8.4)
where a and b are anharmonicity coefficients. The “modified Hooke’s law” now becomes
2 —mbx3— .. (8.5)

av
Flx) =—-—= —Mmw3x — max

The magnitude of the anharmonicity coefficients depends — among other things — on the
symmetry of the material. For a centrosymmetric medium, V(x)=V(-x), we have only
even-order terms:

V(x) = %mw%xz + %m bx* + -

F(x) = —mwix — mbx3 — - (8.6)
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Non-centrosymmetric potential Centrosymmetric potential

R
b

For each type of material, we will consider only the lowest anharmonic terms, since those
tend to dominate over the higher order terms.

Non-centrosymmetric materials — SHG and optical rectification

We will solve the equation of motion for x(t) and hence for P(t) using a simple perturbation
method. First, we will consider non-centrosymmetric media, with only the lowest order
anharmonic term:

d?x

dx e
—tr— + wix + ax? = ——E(t) (8.7)

To solve this equation, we treat the ax? term as a small perturbation. If ax? is small, under
excitation with a harmonic driving field E(t) the electron oscillation x(t) will also be
predominantly harmonic (‘sinusoidal’). This sinusoidal component of the electron motion
will be called xV(t) where the superscript (1) indicates that this represents the first order
(linear) response. In the following we’ll first have a qualitative look at the effect of the
term ax* on the response.

From the equation above we see that there will be a small extra force a - x(t)? on the
electron. In the presence of a sinusoidal driving field E(t) the motion is also approximately
sinusoidal, i.e. x(t) & x")(t). This means that our extra force will scale approximately with
[x(t)]? and thus approximately with E(t)?. For harmonic excitation we thus observe extra
forces of the form sin*(ot) = Y4(1-cos(2wt)). This immediately suggests that for materials
with a finite anharmonicity coefficient a, a large linear response (large-amplitude
sinusoidal motion) will introduce a small contribution to the electron motion at zero
frequency due to the term ‘1’ in the argument above, and a small contribution at twice the
frequency of the driving field due to the term cos(2mt) from above. The generation of these
two terms are called optical rectification and second harmonic generation respectively.

The fact that the [x(V(t)]* term is proportional to 1-cos(2wt) tells us that the strength of the
extra restoring force at both these new frequencies will be equal. The actual induced
additional electron response resulting from these extra force contributions will depend on
the response of the atom to these new driving forces, i.e. on the linear equation of motion.

We have found that the coefficient a can lead to new force (compared to Hooke’s Law)
and therefore a contribution to the electron oscillation that scales with [x(t)]* and thus
with E(t)%. The resulting displacement x with the same functional form as E(t)*> will be
called the second order displacement x® with a corresponding second order polarization
P®@. Both x® and P® can contain terms with different frequencies (in this example zero
frequency and the second harmonic). In order to describe the resulting polarization P® in
terms of E? we will need an expression for the second order susceptibility %@ that specifies
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the magnitude and phase of the polarization response at each of the new frequencies,
denoted ¥?(0) and y?(2w).

The arguments above state that the anharmonic oscillator model will yield a polarization
response that looks almost exactly like the linear response P(, but that will contain a small
(multi-frequency) contribution denoted P® that scales with E(t)* as a result of the
anharmonicity parameter a. A similar analysis involving anharmonicity parameter  shows
that the polarization will also contain a third order polarization contribution P® that is
proportional to x(t)* and thus approximately to [x"]* and to E(t)’. The total polarization
can thus be described by an equation of the form

P(E) = PW 4+ p@ 4 pB®)

= go[xWE + yPE2+ y®F3 + -] (8.8)

Note that the analysis above can also be used when E(t) contains multiple frequencies (e.g.
two laser beams) but first we will investigate the case of a single driving frequency.

To find the second order motion amplitudes x®(0) and xX®(2w) and the corresponding
expressions for x?(0) and y®(2w), we need to solve the nonlinear equations of motion. To
derive the nonlinear equations of motion, we will set the driving field to be AE(t) with
A<<I. Note A is a scaling parameter, not the wavelength. We look for motion amplitudes
x that scale with A according to

x(t) = xD @) + 22x@D () + 3x3 () + - (8.9)

Substituting this into the nonlinear equation of motion (Eq. 8.7) results in terms
proportional to A, A%, A%, etc. Solving separately for only those terms that scale linearly with

A gives an equation of motion proportional to A describing a linear response to the driving
field:

A EW x4 2@ = —%E(t) . (8.10)

Solving Separately for only those terms that scale with A? yields a second order equation
of motion:

20 @ 4 yx@ 4 2x@ = —a(x(l)(t))2 (8.11)

Note that if a=0, this second order equation has no driving term, resulting in only one
solution: x=0, indicating that no nonlinear contribution to the electron motion occurs.

To solve for the response for finite values of a, we first solve the first order equation of
motion, which will give us the linear response. If we take a harmonic driving field:

E(t) = %El(wl)e_i‘“lt + c.c. (8.12)
the first order equation yields
W(p) = —& Fal@)
W) = = S ey (8.13)

which gives the first order macroscopic polarization:
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2
PD(w) = —NexM (w;) = X~ Flen) (8.14)

m wig-—wi—iwy
Realizing that
PD(w) = £ox P (w)E(w) (8.15)

we have found that

Ne? 1
¥ PV(w) === -

gom wi—w?-iwy

(8.16)

This is simply the Lorentz susceptibility, as expected for a system with a linear restoring
force. We will simplify the notation in the following substantially by defining a function
that represents the resonance term in the denominator:

D(w) = w3 — w? — iwy (8.17)

which allows us to write the linear susceptibility of our nonlinear material as

W () = b
¥y (w) = () (8.18)

as we found before using the (linear) Lorentz model.

With the obtained linear response we now have an approximate description of the driving
term in the second order equation of motion:

2
@ +yx@ 4+ @ix@ = —q (x(l)(t)) : (8.19)

This assumes that x(t) looks approximately like the first order response only, which is only
reasonable when the nonlinear contribution is small. Based on the expression for xV(t)

xD(t) = %x(l)(wl)e‘i“’lt + %x(l)(—wl)ei“’lt (8.20)

we find that
2 2 .
(xD©®) = L(xO@y) e it 4 c.c. +2xD(wy)|’ (821)

We see that this term introduces a force that contains a frequency component + 2w; and a
zero frequency component. Consequently the second order displacement x® will also
contain amplitude at these new frequencies. We can describe our second order motion at
this double frequency as

x@(t) = % x@ Q2w )e 2@t 4 c.c. (8.22)
Substituting the first term into the second order equation of motion gives

_(20)1)2% x@ (2w, )e" 21t — iZa)ly% x@ (2w, )e 201t 4

. 2 .
w%% x@) (2w, )e 201t = —%(x(l)(wl)) g 2tnt (8.23)
which together with
W () = — (&) Eled
FW(w) = - (2) 2 o (8.24)
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leads to:

2 2
_ 2 _ 21 (2) _ _a(e\ (Ei(w))
[~w1)? - iy(2w1) + wf] x®20;) = -5 (%) 222 (8.25)

The left term between the square brackets is in fact D(2w:). Dividing left and right side by
D(2m1) produces an expression for the second order contribution to the electron amplitude
at the second harmonic frequency 2w:

(i)z (Ex(w1)” (8.26)

@ = -2
X 2wy) = m/) DQwq)[D(wq)]?

4

Note that the amplitude of the oscillation at 2, is large for excitation at w;=wo and for
excitation at 2m1=wo.

Now we can derive the second order polarization from our expansion
P=pPD 4+ p@ 4 .. (8.27)

using our obtained second order contribution to the electron position:
P@2w,) = ggx® 2wy; w1, w)E*(wy) = —Nex® (2w,) (8.28)

Substituting the expression for xX®(2wm:) gives

N 2 E2
50)((2)(20)1; 0)1;0)1)E2(0)) = %(i) L

m/ DQwq)[D(wq)]?
@ (24, _a(e wp
=X (2(01, W1, wl) T4 (m) D(2w1)D(w;)D(w1) (8.29)

This is the component of the second order susceptibility that describes the second order
polarization and therefore the second harmonic generation in a non-centrosymmetric
medium (a=#0) under illumination with a single-frequency wave at ®. We will discuss later
how this leads to the generation of a second harmonic wave that can grow to be quite large.

In addition to second harmonic generation, we see that there is also a zero frequency
component to P@. Solving for the zero frequency part of (x?(t))* i.e. x?(0) we have

a 2
(0 +0 +wx®(0) = — =[x (wy))|

a sen? E.E
x@(0) = __2(_) e et S
2w5 \m/ D(w1)D*(wq)
. ae? |E1|2
~— 2m2D(0)D(wy)D*(w,)
(8.30)
Where we have used
D(0) = (w3 — 0% —iy0) = w3 and D*(w;) = D(—w,) (8.31)
Defining
P@(0) = gox @ (0; w1, —w,) - 2E1E (8.32)
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we find

@ (0. —.) = () @b
X7 (0; 01, —awq) _4(m) D(0)D(w;)D(—w,) (8.33)

Non-centrosymmetric materials — SFG and DFG

In the above we have seen that a single input frequency can give rise to second harmonic
generation and to optical rectification. When using multiple driving frequencies (e.g.
illuminating a material with two different laser beams) we find a more general solution. If
we take such a driving field

E(t) =5 Ere™1f 4~ Epe™i2t 4 c.c. (8.34)
then (xV(t))> becomes
2 1 2 _ 1 2 .

1 — (@ —2iwqt 4 — (1) —2iw,t
(x (t)) 4(x (a)l)) e it 4+ 4(x (a)z)) e 2t +c.c
+%x(1)(w1)x(1) (wy)e H@rtwdt 4 ¢ ¢,

1 .
+§x(1)(w1) (x(l) (wz)) e U@1mwlt 4 ¢ ¢,

1 2 1 2
+§|x(1)(a)1)| +§|x(1)(a)2)|

(8.35)

showing that we also obtain terms with a frequency that is the sum of the original driving
frequencies, and terms with a frequency that is given by the difference between the driving
frequencies. The corresponding processes are called sum frequency generation and
difference frequency generation.

The nonlinear susceptibilities describing sum and difference frequency mixing are defined
by

P(Z)((Dl + (1)2) = 80){(2)(0)1 + (1)2; (1)1, (1)2)2E1E2 (836)
) . __ Ne3a 1
X701+ w301, 07) = e ) (8.37)
and hence
P@(w; — w,) = gox @ (w; — wy; Wy, —wy)2EE; (8.38)
@y o o y_afe wp
XD (w1 — w501, —wp) =5 (%) O IORTTar (8.39)

The shows that we have resonances at each of the three frequencies involved in the process.

While the anharmonic oscillator model is somewhat limited in accuracy, we should take
away some important messages from it:

x® processes require a medium that lacks inversion symmetry

x® processes result in sum and difference frequency generation. In the case of degenerate
(01=m2) mixing, these correspond to second harmonic generation and optical rectification.
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Resonance enhancement of %® can result if any of the frequencies involved lies close to a
material resonance. In quantum mechanical systems where there are several resonances
more than one frequency can be resonantly enhanced.

The nonlinear susceptibilities are related to the linear susceptibilities.

The last comment relates to Miller’s rule, which can be argued as follows:

We found: (note: factor 1/4 missing — check)

Ned3a 1
gom? D(w; + wz)D(w1)D*(—w,)

¥ P (w1 + w0y, —w,) =

(8.40)
but we also found that
xP(w) = Ne%‘)’m (8.41)
or
ﬁ = yD(w) % (8.42)

This allows us to write
3

3
gem Ne
N3eb x D (w1 + 0)x P (w)x P (w,) x egm?

X(l)((lh + wz)){(l) ((U1)X(1)((U2)

3

¥ P (W + 0wy 0y, w,) = a
_gma
~ N2e3

(8.43)

If we know a/N? and ¢! at each frequency in the process, we will have an estimate of y®.

Miller (Appl. Phys. Lett. 5, 17 (1964)) noted that for all non-centrosymmetric materials
a/N? appears to be roughly constant, i.e. he found that for several different materials

XD (w1 +wa;w1,03)
XD (@1+02) YD (01) x D (w)

~constant = § (8.44)

where

gdma
~ NZe3

This constant is known as Miller’s delta. Variations in Miller’s 8 are limited to a factor ~2.
Miller’s rule allows us to estimate the value of y® for a material without having to measure
it. Typically, § ~2.5x10"3 m/V.

In a medium with n~1.5, we have X ~ n?>-1 ~1.25. In this case we have
x P (w1 + w)x P (w)x P (wy) ~ 2 (8.45)
Typical values of y® are SE-13 m/V or 0.5 pm/V.
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Centrosymmetric materials — THG and nonlinear refraction

Centrosymmetric materials are materials that are invariant under the transformation r — -r.
For such materials, a=0, and hence %® is zero. Hence the lowest order anharmonic term is
mbx>. The equations of motion in this case become

A M4y 4 2@ = —%E(t)
B 5@ 4@ 4 02x® = —p(xD(p))’ (8.46)

Note that all materials (including the non-centrosymmetric ones) have a finite third order
anharmonicity coefficient . This means that the effects described below can be observed
in all materials at sufficient incident irradiance.

For a monochromatic driving field

E(t) =5Eie™ +c.c. (8.47)
we have
xD(wt) = %x(l)(a))e‘i“’t +c.c. (8.48)

In the third order equation of motion this leads to a driving term proportional to
3 1 3 .
(€Y — (@ —3iw,t
(x (t)) > (x (a))) e it +cc

1 .
+§~ 3x(1)(a))|x(1)(w)|2e“wt +c.c.
(8.49)
resulting in a polarization component oscillating at 3w, the third harmonic, and a
component oscillating at a frequency ®. This intensity dependent contribution to the

susceptibility at the fundamental frequency results in an intensity dependent refractive
index and intensity dependent absorption.

Now, for the component at ® we have

—3be3/(2m)3
3) - _

—3Nbe*/(2m)3
P®)(w) = —Nex®(w) = D3(w§D/((—Z)) |E1|?Ey

(8.50)
But

PO () = gox®(w; 0, 0, —w)|E;|?E;
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2
Wp

D(w)D(w)D(w)D(—w)

1P (w0, 0, —w) =g (%)2

(8.51)

and
2
Wp

D(Bw)D(w)D(w)D(w)

1®Gw; w, v, ) =g (%)2

(8.52)

corresponding to the third order susceptibility contribution giving rise to a third harmonic
signal.
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Chapter 9 — Homogeneous and inhomogeneous broadening

» Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html

In the preceding chapters we have seen optical transitions that occur at specific frequencies,
with a linewidth determined by some damping process described by a damping constant I"
(s). We might expect that a system containing many such oscillators will result in an
absorption line with the same linewidth I'. If the linewidth of a collection of oscillators is
practically the same as that of each individual oscillator, we call that line homogeneously
broadened.

In real world situations however it is often found that the oscillators in a system all behave
slightly differently. This can happen for example with molecules in a gas laser, quantum
dots in a quantum dot detector, or rare earth dopant ions in a fiber amplifier. In these cases
an absorption line may be broad not because I is large, but instead because o is a little
different for the different elements in the system. If the linewidth of a collection of
oscillators is larger than that of each individual oscillator, we call the line inhomogeneously
broadened.

Inhomogeneous broadening due to variations in local environment

In many solid state systems, the atoms do not experience the same environment. In some
cases, they may be in some random host matrix (e.g. a glass) where the surrounding electric
field is slightly different and somewhat random for each atom, causing the resonance
frequency of each atom to be slightly different. If the shift in the resonance frequency of
each atom is random, the probability of having a given frequency shift with relative to the
mean frequency is usually described by a Gaussian distribution. In this case each atom has
a different resonant frequency, which is known as inhomogeneous broadening.

T
\//L T -1

\
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[ ' —-—
\ ——
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Figure 9.1: (left) Sketch of a block of glass containing dopants with an absorption line, and (right)
sketch of the ground state and excited state energy levels. Variation in the local environment leads
to variation in energy levels and transition energies, causing inhomogeneous broadening.

Doppler broadening
According to statistical mechanics of ideal gases, atoms (or molecules) in the gas phase

have an isotropic temperature-dependent velocity distribution, described by the Maxwell-
Boltzmann distribution, given by
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m \3/2 )
— 2 ,—mv*/2k

fus() (anT) 4nv‘e

Here fus(v)dv represents the fraction of atoms with a thermal velocity magnitude between
v and v+dv, with m the mass of the atom (or ion, or molecule), and k the Boltzmann
constant. The thermal distribution shows that it is very unlikely that the atoms are stationary
(f—0 for v—0) and it is also unlikely to go extremely fast (f— 0 for v—o0).

Figure 9.2: Sketch of a box containing atomic or molecular gas, with the arrows indicating the
direction and velocity of moment of the atoms or molecules.

When a gas is illuminated using laser light propagating along the x-direction, some of the
atoms will happen to be traveling away from the laser at velocity vx. These atoms will
experience an electromagnetic wave with a reduced frequency, which affects the
absorption spectrum. The modified frequency o’ experienced by the atoms is

, L O U 1—v/c Uy
w' =2m T —ZHCT—w(l——)

This frequency shift is called a Doppler shift. If the stationary atom has a resonance
frequency mo, we would need a laser with a slightly higher frequency in order to excite this
atom to compensate for this Doppler shift.! The atom thus appears to have a modified
resonance frequency wy that is given by

The total absorption spectrum of a gas is thus composed of an ensemble of absorption lines
from all atoms or molecules, each slightly shifted depending on the velocity component
toward or away from the excitation source. For fast atoms (high temperature or low atomic
mass) the Doppler shift can be larger than the original atom linewidth. In this case we
observe significant line broadening, a reduction of the peak absorption, and a change in the
spectral shape of the absorption line, as discussed below.

The inhomogeneously broadened absorption spectrum of atoms or molecules in a gas
depends on the thermal velocity of the atoms relative to the light propagation direction,

I Note that this effect seems opposite to the redshift observed in astronomy. Hydrogen-related emission lines
appear red-shifted because distant stars are moving away from us, while here we are required to use a blue-
shifted laser to excite molecules that are moving away from us. These observations are not in conflict with
each other!

82



whereas the Maxwell-Boltzmann velocity distribution describes the probability

distribution for the magnitude of the velocity |v| = (v + vj + vzz)l/z. To describe
temperature dependent line-broadening, we thus need a new thermal probability
distribution function that describes probabilities for atom motion along one specific axis.
Here we consider the x-axis, i.e. we will use the thermal distribution of vy. It can easily be
shown that this distribution function, called the Maxwellian velocity distribution, is given

by

1/2 )
fu@d) = () e

The graphs below show the Maxwell-Boltzmann distribution (left) and Maxwellian
distribution (right) at room temperature (T=293 K) for a gas containing hydrogen
molecules, oxygen molecules, and Xe atoms (or ions).

Note that at the same temperature molecules with low weight (e.g. H,) move much faster,
and that the typical room temperature velocities are hundreds of meters per second. Also
note that it is relatively likely to have zero velocity along the x direction (right graph,
maximum probability for vx=0). This tells us that most atoms contributing to the total
absorption have v~ 0, and we therefore expect that the absorption of a hot gas will still be
maximum at the original wo. However there are also many atoms with v, # 0 which means
that we will observe some blue-shifted and red-shifted absorption, corresponding to
Doppler broadening.

Maxwell-Boltzmann distribution at T = 293 K for H2, 02, and Xe Maxwellian distribution at T = 293 K for H2, 02, and Xe
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Figure 9.3: Maxwell-Boltzmann (left) and Maxwellian (vight) velocity distribution for a room-
temperature gas of H, O, and Xe.

We can learn about the resulting Doppler-broadened lineshape by considering each atom
as a Lorentz oscillator with a susceptibility given by

2
1)

D
w)=—F""—7—"—
x(@) wé —w?—iTw

but realizing that each atom will have its own modified resonance frequency
%
wo (V) = W (1 + ?x)

with probability f3,(v,). The total susceptibility spectrum then follows from the addition
(integration) of all susceptibility contributions for all possible vy:
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oo
2

Wp
x(w) = J- w0y (1)? — w? — irwa(vx) dvy

Substituting fu this gives

m \1z [ w?
— 14 -mv,%/Zde
x(@) = (2 kT) f wy(v)? — w? — iTw ¢ Vx

With a known concentration N(m™) this describes the entire complex dielectric function,
and we can therefore calculate the Doppler-broadened absorption spectrum. We can find
an approximate expression for the absorption coefficient by considering the resonance
approximation ® = wo, which we may do if the (Doppler-broadened) linewidth is much
smaller than wo. In the resonance condition we have

v\ W 1/2 r/2
X(w) = Z_a)o(anT | @y(w) = w)? + (T2

—mv,%/Zdev
x

For small susceptibility (n=1) which is reasonable in the gas phase, we can approximate

n
the absorption coefficient as a = ZK%z)% resulting in the Doppler broadened

absorption spectrum:

2 2 [ r/2
~ ﬂ _m / -mvZ/2k
a(w) = 2¢ (27TkT) f (wo(ve) —w)? + (T'/2)2 ¢ avy

The spectral shape of this inhomogeneously broadened absorption line is known as the
Voigt lineshape. We can look at the extreme cases of mostly homogeneous broadening
and strong inhomogeneous broadening. Note that the integrand is just a product of a

vk /m>>

Gaussian function and a Lorentzian. Thermal line broadening dominates when

r . . . . .
—. In this case the Lorentzian function becomes approximately a delta function that peaks
0

. (w—wp)c
when w = wq(vy), i.e when v, = >

, resulting in a Gaussian lineshape:
0

L0y e
a@) ~ 3¢ (Gr) ¢ E

r . .
< -, then the Gaussian acts like

VKT /m
c 0

a delta function and the absorption line reverts back to the original Lorentzian lineshape:

If the homogeneous width dominates, i.e. when

w} r/2
2¢ (wg — w)? + (T/2)2

a(w) =

This transition from Lorentzian to Gaussian is highlighted in the graph below, which shows
the lineshape in an argon gas with resonance at 514 nm, with an assumed linewidth of 10°
rad/s, shown at ‘0 K’, 10 K, and 293 K. Note that already at 10 K the thermally induced
broadening becomes comparable to the 10° rad/s linewidth. Also note that the broadening
results in a reduced peak absorption, and therefore also in a predicted reduction in the peak
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emission cross-section, and a reduced maximum gain if this transition is used for lasing or
optical amplification.

Voigt lineshape: Ar at T=0, 10, 293 K for N=1.x 10” /m3, G=10"9/s
alpha(w) (fm}
1x10°}
800000
600000

400000+

200000+
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Figure 9.4: Examples of the Voigt lineshape for different temperatures
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Chapter 10 — Interaction of light with molecular vibration and rotation

» Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html

In Chapter 5 we studied the Lorentz oscillator model to describe electronic motion in
response to a high frequency electromagnetic wave. There we ignored any motion of the
nucleus, which was a reasonable approximation because atomic nuclei are at least three
orders of magnitude heavier than electrons. However, atoms with a net charge (ions) can
be moved by low-frequency light, resulting in NIR and IR absorption features associated
with nuclear motion. In addition, we will see that a slight variation of electronic
polarizability during vibration leads to Raman scattering.

Molecular bonds

To understand vibrational transitions in molecules, we first need to understand what holds
molecules together. Let’s consider a hydrogen molecule, consisting of two hydrogen
atoms. Each atom core with a charge of +1e is surrounded by an electron with charge -1e,
making each atom neutral. Classically we might thus expect that separate hydrogen atoms
don’t attract or repel each other, and therefore it’s not entirely obvious that a molecular
bond would form. The reason for chemical bonds lies in quantum mechanics.

From quantum mechanics we know that bound electron states are described by the
Schrédinger Equation, where the electron position and energy are described by a
wavefunction. Electron wavefunctions in a system of two attractive potentials (here the
hydrogen cores) can occupy states where the electron probability between the atoms is
zero, as well as states where the probability between the atoms is finite. The former state
has a higher energy than the system of the separate hydrogen atoms, and is called an ‘anti-
bonding’ state, and the latter has a lower energy than the separate hydrogen atoms, and is
called a ‘bonding state’. The energy of the bonding state depends on the distance between
the atoms. The system energy as a function of separation between the atoms (bond length)
is often described phenomenologically by the Morse Potential, which describes the
potential energy of the molecule as a function of bond length 1:

UQ) = B, (1—e~a00)° (10.1)

where Ej is the binding energy, 1o is the equilibrium bond length, and a is a constant that
describes how rapidly the energy varies with bond length. The graph below shows an
example with E,=250 meV, ro=1.15 A, and a=1.5 A"
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Figure 10.1: Example of the Morse potential vs. inter-atomic separation r.

Note that when the atoms are far apart (large bond length) the potential is almost flat,
corresponding to free atoms. As the atoms approach each other the energy is reduced,
resulting in binding. Trying to push the positive cores closer together to within sub-
angstrom distances rapidly raises the energy, in part due to Coulomb repulsion. The system
has a minimum energy at r=ro, and decreasing or increasing the bond length takes energy.
The molecular bond thus acts as a ‘spring’ that tries hold the system at its equilibrium bond
length. For small motion amplitude, the resulting restoring force is approximately
described by Hooke’s law. Using the Morse potential from above we find a spring constant
K given by

N d?U(r) o

k()= () = 2B0am™. (10.2)
r=ry

We thus expect that a diatomic molecule can undergo harmonic oscillation of the bond

length at a frequency determined by the atomic masses and the bond strength. Before

investigating how light can induce such molecular vibration, we first will introduce the

concepts of normal coordinates and normal modes.

Normal modes

In order to model the movement of ion or atom positions we need to track each individual
atom in three dimensions. Modeling the atom positions of a molecule containing N atoms
would therefore require 3N coordinates, or 3N degrees of freedom. As systems become
more complicated (large molecules or even solids), it becomes impractical to describe the
motion of each atom separately. Instead we will describe vibration and rotation in terms of
normal coordinates that represent motion patterns of several of the atoms at once. We will
choose 3N such normal coordinates such that we can still describe an arbitrary arrangement
of the atoms. The simplest possible system for which we can do such a mode decomposition
is the diatomic molecule.

Figure 10.2: Nitrogen molecule configuration described by the two atom positions and the
position of two valence electrons

An example of a diatomic molecule is the nitrogen molecule, N». In order to describe all
possible configurations of this molecule we need 3N = 6 coordinates. Instead of describing
the atom positions (x1, yi, z1) and (X2, y2, z2) separately, it is more convenient to describe
their joint motion or position in terms of normal coordinates. One such normal coordinate
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is the location of the center of mass, which requires three coordinates (x, y, z). The
corresponding motion is ‘change of center of mass position’, or translation. A second
coordinate is the bond length, which requires one coordinate (7). The corresponding motion
is ‘change of the bond length’, or vibration. Thus far we have used a total of 4 coordinates.
The remaining two are needed for orientation. For this linear molecule, the orientation can
be described by angles ¢ and 6. The corresponding motion is ‘change in orientation’ or
rotation. Note that we can now describe any arbitrary position of the diatomic molecule
atoms, and we have again used a total of 3N=6 normal coordinates: three for the center of
mass, one for bond length, and two for orientation. For molecules that are not linear (e.g.
that have two-dimensional or three-dimensional structure) ¢ and 0 together don’t cover all
possible orientations; we would need a third angular coordinate: rotation about a chosen
molecular axis.

We can now predict the number of vibrational normal modes (motion patterns) that can
exist on particular molecules. Molecules with N atoms can be described with 3N
coordinates. Out of these, 3 are needed for translation. In the case of linear molecules, we
need 2 angular coordinates for orientation. That leaves 3N-5 normal coordinates for
vibrational modes. For 2D and 3D molecules we need 3 angular coordinates, leaving 3N-
6 vibrational coordinates. This means that most molecules will support many different
vibrations, each with its own frequency. For example, a water molecule (H»O, three-
dimensional because the two H-O bonds are not collinear) will have three vibrational
modes, and an ammonia molecule NH3 (also a 3D molecule) will support six vibrational
modes. As a consequence, vibrational spectra rapidly become complicated. This also has a
benefit: we can identify molecules by measuring their vibration spectra, since these spectra
provide a lot of information about bond strength and atomic masses present in the molecule.

Note that the chosen coordinates are independent’: we can have a molecule vibrate while
its center of mass is stationary, but it can vibrate in exactly the same way while the molecule
is moving (time dependent center of mass). This makes them "normal coordinates", and
their corresponding time dependent motion "normal modes".

The center of mass motion is rarely of interest in optics, except for the realization that
center-of-mass motion can lead to Doppler shifts in absorption lines (Chapter 9). The more
interesting coordinates for light-matter interaction are the vibrational and rotational normal
coordinates of the molecule. Depending on the charge distribution on the molecule, these
motions can introduce NIR and IR absorption features related to vibrational, rotational, and
rovibrational transitions (combined rotation plus vibration) as discussed below. In
addition, since the vibrating atoms in the molecule are surrounded by bound electrons, we
will find that combined electronic plus vibrational transitions can also occur, the so called
vibronic transitions.

i This is a first order approximation. For example, we will see later that fast rotation will stretch the molecule
due to centrifugal forces, so the coordinates are not exactly independent.
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Figure 10.3: Sketch of the normal coordinates of a diatomic molecule (blue) showing translation
(three coordinates), vibration (one coordinate), and rotation (two coordinates)

Atoms: N

Total nuclear coordinates: 3N

3 translational coordinates (center of mass of molecule)

Linear molecules Other molecules (2D, 3D)
2 rotational modes 3 rotational modes
3N-5 vibrational modes 3N-6 vibrational modes

Number of normal coordinates needed to describe N-atom molecules

Born-Oppenheimer Approximation

To describe the rotation and vibration related optical response we would in principle have
to model how the valence electrons follow the moving atom cores. Thankfully, the low
mass of electrons means that they can respond quickly to forces (F=m-a, so small mass
implies a fast response). For many practical situations the electrons respond so quickly
compared to the nuclear motions that we can consider the electrons as following the atom
core positions "instantaneously”" as the molecules vibrate or rotate. This assumption is
called the Born-Oppenheimer approximation.

Typical spectral ranges for vibrational and rotational transitions

Most atoms contain many protons and neutrons, each of which weighs approximately 1
amu ~ 1.66 X 1072 kg. Even the lightest atom (hydrogen) with a core mass of 1 amu is
already 1800 times heavier than an electron which has a mass of my = 9.1 x 10731kg.
When subjected to similar forces, atoms thus accelerate much less than electrons, and
consequently molecular vibrations occur at relatively low frequencies that are 10-100x
slower than typical electronic transition energies. Rotational energies are much lower than
vibrational energies. The corresponding wavelength ranges are summarized below.

Vibrational: near infrared to long wave infrared, about 1-50 um
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Rovibrational: Combination of rotation and vibration changes, also at 1-50 pm

Purely rotational: Far infrared, about 100 - 500 pum

Dipole active modes

As we saw, most molecules support several vibrational modes. It turns out that light can
usually only directly excite a limited subset of all these modes, the so-called dipole active
modes. This can be understood by first considering the effect of a static electric field on a
molecule. If the molecule contains atoms with different total charge (core charge + electron
charge), the field will push the positively charged atoms in one direction, and pull the
negatively charged atoms in the opposite direction. The field can therefore stretch the
molecular bond and increase the dipole moment on such molecule. If the field oscillates, it
can induce an oscillatory motion and oscillatory dipole moment, corresponding to periodic
vibration and/or rotation. Modes that can be excited by an oscillating electric field are
called dipole active modes. From another perspective, a mode is dipole active when its total
dipole moment changes during its vibration or rotation.

The simplest dipole inactive mode is the stretch vibration of symmetric diatomic
molecules. Diatomic (and thus linear) molecules have 3N-5=1 vibrational mode. If the
molecule contains only one type of atom, e.g. O, N, etc., it does not have a net dipole
moment because of symmetry: both atoms are the same, and there is no reason for one of
them to attract electrons more than the other. Each identical atom has the same net charge
of zero, and therefore light does not accelerate either of the atoms. The molecules can
vibrate, but their dipole moment (zero) does not change while they do this. Consequently,
the vibration is called dipole inactive. Light cannot cause move motion of the atoms, so
there is no absorption related to vibration or rotation.

The simplest possible example of a dipole active mode is the stretch vibration of a
heterogeneous diatomic molecule. A diatomic molecule containing different atom types
will still support only a single stretch vibration. However, the different atoms will have
slightly different affinity for electrons, i.e. a different electronegativity, and as a result one
of the atoms will end up being slightly negatively charged, while the other atom will be
slightly positive. For example, in a HCI molecule, the chlorine atom has a net charge of
approximately -0.2e, and the hydrogen atom has a net charge of approximately +0.2e. In
this case the molecule has a net dipole moment, and stretching the molecule increases the
dipole moment. The stretch vibration therefore has a time-dependent dipole moment,
making this mode dipole active. In addition, since the HCIl molecule has a permanent dipole
moment electric fields can also exert a torque on the molecule, meaning its rotational
modes are also dipole active. Or vice versa, as the molecule rotates, the (vectorial) dipole
moment changes over time, and thus rotation of the HCI molecule is called dipole active.

A slightly more complicated example is the carbon dioxide molecule, CO,. This molecule
contains two collinear double bonds, schematically shown as follows: O=C=0. This is also
considered a one-dimensional (linear) molecule. The oxygen atoms are more
electronegative than the carbon atom, and therefore the molecule contains two polar bonds.
However, since the negative oxygen atoms are symmetrically placed around the carbon

! As it turns out, their electronic polarizability does change during vibration, resulting in a modulation of
scattered light, resulting in an effect known as Raman scattering, discussed later in this Chapter.
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atom, the net dipole moment is still zero. Another way of saying this is that the dipole
moments of the two bonds are pointed in opposite direction (outward with equal
magnitude), and their sum is zero. During the rotation of a CO, molecule the net dipole
moment remains zero, and therefore purely rotational motion of CO; is not a dipole active
mode, and light cannot excite a purely rotational motion in CO,. We will see later that light
can excite a vibration while simultaneously changing the rotation of CO», called a
rovibrational transition.

The CO; molecule does not have a net dipole moment, but we noted that it does have charge
separation (different net charge on different atoms). As a result some of its vibrational
modes turn out to be dipole active. Let’s consider all of its normal modes. Recall, to
describe nuclear motion on the linear CO, molecule we need two rotational coordinates
and 3N-5 = 4 vibrational modes. The image below shows these modes. The top mode is
called the symmetric stretch mode, with the oxygen atoms moving in opposite direction
while the carbon atom is stationary. During this vibration the two bonds both have a time-
dependent dipole moment, but the sum of these dipole moments remains zero. Or
alternatively, at each time during the vibration the average position of the negative charge
is identical to the average position of the positive charge. This vibration is therefore dipole
inactive. The middle image shows a mode known as the asymmetric stretch vibration. In
this mode the oxygen atoms move in the same direction, while the carbon atom moves in
the opposite direction. In this mode whenever the left bond stretches (and therefore has an
increasing dipole moment) the right bond compresses (and therefore has a reducing dipole
moment). The result is that a net dipole moment develops during this vibration, making
this mode dipole active. An alternative viewpoint is that the negative atoms move in one
direction, and the positive atom in the other. The average negative and positive charge
positions move in different directions, meaning that dipole moment is changing. Finally,
the bottom image shows a vibration known as a bending mode. Again the oxygen atoms
move together in one direction, and the carbon atom in the opposite direction. This too
corresponds to a time dependent dipole moment, and the bending mode of CO» is therefore
also a dipole active vibration. This bending mode can occur in-plane and out-of-plane, so
we need two of these normal modes to describe bending in an arbitrary direction. This
mode therefore counts for two normal modes, with identical energy. Such modes with the
same energy are called degenerate.

One important note: changing the length of a bond typically takes more energy than

bending a bond. That means that stretch vibrations typically occur at higher energy than
bending vibrations.
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Figure 10.4: the vibrational modes of the CO, molecule. The top symmetric stretch is dipole
active, while the asymmetric stretch (middle) and bending mode (bottom) are dipole active.

Classical description of vibrations in molecules and solids

In the following sections we will describe vibrations on molecules and in solids using an
entirely classical oscillator model.

Vibration Modes in a Diatomic Molecule

As discussed above in the section ‘molecular bonds’, the energy of a molecule depends on
the bond length. Any changes in the bond length result in a restoring force. We can thus
attempt to describe vibrating molecules by a system of masses held together by springs. To
find allowed vibration frequencies and their associated motion patterns (normal modes) we
solve the equation of motion for all atoms at the same time, and look for oscillatory
solutions with a single oscillation frequency. In three dimensional large molecules, a
normal mode can be some complicated vectorial motion pattern where atoms oscillate
along different directions with different amplitudes. Here we will discuss the simple case
of a heterogeneous diatomic molecule, and assume that all motion will be along a single
dimension (for example the x-axis), meaning we can make use of scalar rather than
vectorial position coordinates.

We consider a diatomic molecule with masses m; and my, positions x; and x; relative to
the equilibrium position of the left and right atom respectively, and held together by a
chemical bond with a spring constant K. When x, > X, the spring has lengthened, resulting
in a positive force on atom 1, and a negative force on atom 2. The equation of motion for
the two atoms thus becomes

myX; = K(x; — x1)
myX, = —K(x; — x1)

We are looking for a normal mode with a single frequency, so we will substitute x; (t) =
x1 (w)e'? and similar for x,. Importantly, we thus demand that both atoms oscillate at the
same frequency. For simplicity of notation here we omit the complex conjugate which
would be needed to obtain real amplitudes. Substituting this harmonic motion into the
EOM, taking the time derivative, and dividing out all common exponential terms, we end
up with

—-myw?® X (w) = K(Xz(ﬂ)) - Xl((*)))
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—myw? X, (w) = —K(Xz (w) — x4 (00))
Grouping all x; and x» terms and moving them to the left results in
[-myw? + K]x;(w) — Kx,(w) = 0
—Kx;(w) + [-myw? + Klxy(w) =0
This can be written as a matrix relation

(K - myw? —-K 2) [x1(00)

=0
—-K K —myw?/ 1x;(w)

This equation has solutions if the determinant of the matrix is zero, corresponding to
(K —miw?)(K —myw?)—K?=0
= —Kmyw? — Km,w? + mymyw* =0
= w?(—K(m; + my) + mym,w?) =0

This has one trivial solution, ® = 0, corresponding to an absence of relative motion, which
does not correspond to a vibrational mode. If ®#0, we can divide out the term ®? and find
a solution if the remaining term between brackets is zero, resulting in

2_Km1+m2=K(1 1)

w* = _
mim, m m

This is often written in terms of a quantity known as the reduced mass |, defined by

1 1 1

e

Homy mp

We have thus found an allowed normal mode with a frequency

K

Wyjp =
U

To find the corresponding motion pattern associated with this normal mode, we substitute
the obtained frequency in our trial solutions for x;(t) and x»(t) and substitute these into one
of the EOM gives

x1(w) _ _my
Xz (w) m

We see that the mode with this frequency has a motion pattern in which atom 1 and atom
2 move in opposite directions, which stretches the bond. We have found a stretch vibration.
If m;<m; then atom 1 has a larger motion amplitude than atom 2. Note that we don’t know
anything about the rofal amplitude: all we know is that at the stretch vibration frequency
the atoms will be moving in anti-phase, with a relative amplitude given by the mass ratio.

Together with Ey and a from the Morse potential for the H-CI bond we can now predict the
vibration resonance frequency of the HCl molecule. The chemical bond determines the
spring constant K, and we can look up the atomic masses to find m; and m,, giving us p,
which together with K gives us @yib.
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Some interesting limiting cases: if m, >>m; we find x; >> x», i.e. atom 2 moves very little.
In this case the reduced mass approaches | ~ m;, and the vibration frequency becomes
Wyip = /K /my corresponding to a single mass on a spring with spring constant K,
attached to an immobile object. This is reasonable for large mo.

Another useful limiting case is the situation where both masses are identical with
m;=m,=m. Note that this would correspond to a molecule with no charge separation, and
therefore the mode would be dipole inactive. For such molecule we find that p = m/2

resulting in w,;, = \/ K/(m/2) = \/ 2K /m. This looks like the vibration frequency of an
atom with half the mass on a spring with spring constant K, hence the term ‘reduced mass’
for . This result can be understood by realizing that the masses undergo correlated motion.
For every Ax of motion of atom 1, the spring lengthens by 2Ax, since the other atom is
moving in the opposite direction. The restoring force is thus twice as large as expected
based on Ax;, resulting in a spring that appears twice as strong.

With the analysis developed above we can make some predictions about the vibration
frequencies of the CO, molecule. For the symmetric stretch we see that both O atoms
oscillate on a fixed central C atom, so we anticipate a symmetric stretch frequency of

Ky,

wss = |—
sS "y

where the subscript L indicates that this is for longitudinal motion. As argued earlier, this

mode is dipole inactive. For the dipole active asymmetric stretch vibration we see that there

is a total mass 2m, moving to the right and a mass m, moving to the left. If we define a

corresponding reduced mass for this particular motion pattern

1 1 1

Uco, Mc 2my

and noting that the forces on the C atom are twice as large as expected for a single bond,
we anticipate an asymmetric stretch vibration frequency of

2K,

Hco,

Wys =

Note that this pco, < 2mg and therefore wys > wgs.

Finally, the dipole active bending mode is expected at lower frequency because of the fact
that the ‘transverse spring constant’ Kr associated with bond angle deformation (‘bending’)
is generally lower than K.

Quantum description of light interaction with rotation and vibration
Unlike vibrational modes, rotational modes have no resonance in the classical picture. We

might thus expect that molecules con rotate at arbitrarily low speeds, and we classically we
don’t expect absorption resonances from rotations. And yet, such rotational absorption
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resonances exist. To look understand absorption resonances due to rotational modes, we
must consider quantum mechanics.

Classically the rotational energy of a rotating object can be varied continuously by
changing the angular frequency of motion, as given by

oY o )

) 12.1
rot 2 2] 2] ( )

where L is the angular momentum, and / is the moment of inertia. However, since moving
mass has a wave-like behavior, allowed sustained rotational motion requires that one
roundtrip of the molecule fits an integer number of waves. The result is a quantized

rotational energy spectrum, with discrete energy Eigenvalues E,lot given by

2
gl =IO oo,
21 (12.2)
= J(J +Dha,,

Since J is an integer, the rotational energy levels will end up separated by multiples of the
quantity hw,; so this quantity is not “the rotational energy”. Note that w,.,; follows from
the moment of inertia according to w;.,; = h/(21). In the literature instead of using the
quantity w,,; people often use 7,,.(cm™1) = 1/A(cm). Both @ and v are linear in energy.
To convert from w,o¢ t0 Vior, simply convert the energy Aw;,; to the corresponding
wavelength in cm, and take the inverse. In this case,

E! =J(J+Dhcv,,. (12.3)

rot

Sometimes i is labeled as “B”.! Note that J(J+1) is a quadratic in J, so that the spacing

between energy levels increases with J. For a molecule with an angular momentum
quantum number J, the distance to the next higher energy level is:

E" —E =[(J+D)(J+2)=J(J +D]hev,,
=[P +37+2-02 = Dhev,, (12.4)
=2(J +hcv,,
We see that the energy level spacing increases linearly with J. This observation, together
with a selection rule for rotational transitions, determines the kind of rotational and

rovibrational absorption spectra that are commonly observed. For optically induced
rotational transitions changes of J must follow the rule

AJ =0,%1. (12.5)

Light incident on a polar molecule (i.e. with a net dipole moment) can increase the rotation
of the molecule (‘speed up its rotation’) by increasing J by one. In an extremely cold gas
with most molecules in the J=0 state we might expect that light can only cause a transition

i For higher rotational energy states, centrifugal force stretches the molecule and this lowers the energy,
which may be written as Erjot =J({J + 1DhceB — J?>(J + 1)hcD, but we will not consider this correction in this
course.
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from J=0 with energy E mt = J(J + Dhw,or = 0 to a state with J=1 with energy Emt

JU + Dhaw,or = 2hw,o. We thus would expect exactly one absorption peak at energy
2hw,o;. But, if some molecules are already rotating, e.g. with J=1, light could cause a
transition from J=1 with energy Emt = 2hwyoe to J=2 with energy mt =JJ+
D hw,or = 6Rw,0;. These molecules would add an absorption line at energy 4hw,.,;. We
see: molecules that rotate faster absorb at higher energy. For a hot gas with molecules in
various rotational states we thus expect to see an absorption spectrum with peaks that are
evenly spaced, located at multiples of 2hAw,.,; and therefore spaced by 2Aw,,;. In the
sketch below we see an example of such a purely rotational absorption spectrum and one
of the responsible transitions indicated by the red arrow. Each absorption peak corresponds
to molecules with a distinct initial value of J.

J=

o) !
J=0 to J=4to 6

J=1 J=5 E____ .

o

0 2th 4th 6th 8th ]Oth 12th Energy

Figure 10.5

Typical rotational transition energies

For molecular Hydrogen, Ha, hcB = 5.8 x 1022 J, so the lowest energy transition it can
make is from E%,=0 to El}x = 2(J+1) heB = 1.16 X 10! Joule or 7.25 meV. The
corresponding free-space wavelength is 171 um, which lies in the far infrared (FIR) region.
Although H> does not exhibit dipole-allowed rotational transitions, the calculated transition
energy represents an estimate for the energy of rotational absorption lines of other
molecules. In general, these energies will be lower, since H, is the lightest possible
molecule and hence has the smallest moment of inertia.

Thermal population of rotational states

When comparing the calculated energy of the lowest H; rotational transition to the thermal
energy, kT, at room temperature (~25 meV) it is clear that several rotational levels in H»
will be populated at room temperature. But the population of levels reduces exponentially
with energy, resulting in an exponential drop-off in the strength of the absorption lines with
frequency.
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Vibrational transitions

The approximation that atoms in a molecule experience a linear restoring force turns out
to be a reasonably good one. This means that the potential that the atoms sit in is close to
parabolic, for small displacements. The behavior of the bond length can be modeled by a
quantum harmonic oscillator, for which the solutions are well known:

Eub= (v + B)hoo, v=0,1,2, ... (12.6)

with v the vibrational quantum number, and with @, = /K / 1 the classical resonance

frequency. For a perfectly parabolic potential, the energy levels are equally spaced. The
absorption spectrum is again affected by a selection rule: Av == 1. Since the energy level
spacing is fixed, there is only a single absorption frequency, regardless of the initial state
of the system. However, anharmonicity of the potential (i.e. the potential is not exactly
parabolic, see the Morse potential earlier in this Chapter) results in a slight relaxation of
this rule, which can result in weakly-allowed excitation of multiple vibration quanta
(Av=£2, £3), etc. Anharmonicity also results in slightly unevenly spaced energy levels, as
shown below:
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Figure 12.7
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For a polyatomic molecule, we have multiple resonances corresponding to the different
vibration modes of the molecule:

Evib = (vi + 2)ho1 + (V2 + V2)hios + ... (12.7)

where there are 3N-5 or 3N-6 vibrational modes, and there is one absorption/emission
resonance frequency for each mode.

Vibrational rotational transitions

Whenever there is a dipole active vibrational mode, light can also exert a torque on the
molecule during the vibration. As a result, excitation of vibration almost always also
changes the amount of rotation of the molecule. Since vibration energies are much larger
than rotation energies, the change of rotation has relatively little effect on the transition
energy. In other words: the energies of combined vibrational and rotational transitions
(rovibrational transitions) will be close to those of a typical vibration energy hAw,,;;,. Since
the rotation may increase or decrease, the total energy needed for the transition may be a
bit more or a bit less than Aw,,;;, and we thus expect to see absorption lines slightly below
and above the vibrational energy. The selection rules for these transitions are the same as
discussed above: rovibrational transitions require Av = +1 (and sometimes +2).

For AJ = -1, this is called the  “P-branch”

For AJ=0 “Q-branch” (often forbidden)
For Al =+1 “R-branch”
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Figure 12.8

Above are the vibration-rotation transitions for HCI, showing the strongly allowed Av = 1
(fundamental band), along with the weakly allowed Av =2 (overtone band). The associated
absorption spectrum for HCI is shown below.
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Coupled electron/vibration transitions in molecules
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Figure 10.9

Similarly, electronic transitions can terminate in different vibrational and rotational states,
resulting in broad electronic absorption/emission bands. There are no simple selection
rules here, but the Franck-Condon principle states that the vibrational coordinate should
not change during a transition, (see below). Since the electrons have highest probability of
being at the extreme positions of their excursions, this controls which transitions are most
possible, which strongly affects the shape of the absorption band.
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Figure 12.10
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Due to the Franck-Condon principle and the tendency for molecules to relax to the bottom
of the vibration bands, the emission spectrum is shifted to longer wavelengths than the
absorption spectrum, and the emission band usually looks like a mirror image of the
absorption band

T I I

Singlet-state absorption

1

Excited-state emission

Relative strength
N

450 500 550 600 650
Wavelength (nm)

Figure 10.11

Raman active modes

Modes that are not dipole-active can also interact with electromagnetic radiation indirectly.
For example, vibrational and rotational modes in H, are not dipole active, but if an electric
field is applied, the electrons move in response to the field, thus polarizing the entire
molecule. If the electronic polarizability depends on the molecule length (or orientation),
the induced dipole moment with frequency ®; will be modulated by the vibrational (or
rotational) mode: a dipole active mode has effectively been induced through the electronic
polarization. This leads to “Raman Scattering”, and this type of dipole inactive mode is
sometimes termed “Raman Active”. The effect of the configuration dependent electronic
polarizability is that a high-frequency electromagnetic wave can interact with the rotational
or vibrational modes. This can result in the rotational or vibrational state of the molecule
being changed by the incident radiation. This is analyzed classically in Hopf & Stegeman,
chapter 3, but we will not discuss the analysis in this class in detail. Usually, Raman
scattering is described quantum mechanically as shown in the following diagram:
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An incident wave with frequency w;, is incident on the molecule, polarizing the molecule
through a dipole-active mode (e.g. electronic polarization). There is no absorption, as w; is
usually far from the resonance of the dipole-active mode. The dashed line is not a real
state, but referred to as a “virtual state” (dashed line), which is just to say that the molecule
is being driven at the incident frequency, w; without absorption. When in the virtual state,
the molecule can interact with the electric field, and may gain (or lose) a quantum of
vibrational or rotational energy from (or to) the EM field. Hence, the scattered light with

frequency s will be emitted with either a smaller photon energy , iimws = fiw; - 72, which

is referred to as Stokes scattering or with a larger photon energy, %ws = hw; + #Q, which is

referred to as Anti-Stokes scattering. We will discuss later what a “quantum of vibrational
or rotational energy” is, when we look at quantum mechanical variations from classical
models.

As a simplified example of how these new frequencies are generated, we will consider a
di-atomic molecule that has a bond length that oscillates in time according to

L(t) = Ly + AL X cos (wyipt)

Here wvib is the frequency of the stretch vibration, which we assume lies in the near-
infrared. Now let’s assume that the polarizability of this molecule to first order depends on
the bond length according to

da
a(t) = o + (L) ~ L) 77

This equation shows that the polarizability is approximately o, but varies as L(t) deviates
from Lo. The leads to a time dependent polarizability given by

da
a(t) = ag + AL X Cos(wvibt)a ~ ay + Aa X cos(wyjpt)

with Aa the amplitude of the polarizability variations. Let’s look at the dipole moment p(t)
that develops under monochromatic illumination of this molecule:

E(t) = Eg cos(weyxct)
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with wexc the angular frequency of the incident laser irradiation. This gives rise to a time
dependent dipole moment given by:

u(t) = a(t) xE()
= (ay + Aa X cos(wyipt)) X Ey coS(Wexct)
= ayEq cos(weyct) + EgAa cos(wyipt) coS(Wexct)

The first term is simply the induced dipole moment at the laser frequency, which gives rise
to normal dipole radiation (Rayleigh scattering). More importantly, the last term contains
both the vibration and the excitation frequency, and can be written as:

Au(t) = EyAa X cos(wyipt) coS(Weyct)
=—E.Aa e_iwvibt + e+iwvibt e—iwexct + e+iwexct
£ ( ) )
= _EOAa[e_i(wvib‘l'wexc)t + e_i(wvib_wexc)t + e+i(wvib_wexc)t

+ e+i(wvib+wexc)t]
1
= EEOAO‘[COS(((Uexc - wvib)t) + COS((wexc + wvib)t)]

We thus have found:
1
©(t) = agEy cos(wexct) + EEOAO([COS((wexC — Wyip)t) + cos((Wexe + Wyip)t)]
This represents a dipole moment that oscillates predominantly at the frequency of the
incident radiation, but with two small contributions that oscillate at slightly lower and

slightly higher frequency than the incident laser light. These frequencies mex—®vib and
Wexctvib correspond respectively to the Stokes shifted and the anti-Stokes shifted lines.
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Chapter 11 — Debye model of the optical properties of polar liquids

» Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html

In the preceding Chapters we modeled the optical response of atoms in dilute gases with
the Lorentz model, and described the response of solids using the Lorentz model (bound
electrons, linear and nonlinear response) and the Drude model (free electrons). A state of
matter that we have not discussed yet is the liquid. This Chapter introduces the Debye
model, which can be used to describe the low-frequency (‘microwave’, far infrared, GHz)
response of polar liquids.

Liquids are composed of molecules or atoms that are densely packed (similar densities as
solids), but the molecules still have the freedom to move around and reorient. Since the
molecules in the liquid contain bound electrons, we expect that light can excite the
electrons, just like in insulators. This results in optical absorption at visible and UV
frequencies, which we can attempt to describe with the Lorentz model. In addition, liquids
containing molecules that have a net dipole moment, for example water, show another type
of polarization response at low frequency, related to the slow field-induced alignment of
the molecules in the liquid. To model this kind of electromagnetic response we will make
use of results from statistical mechanics.

Figure 11.5: Schematic view of densely packed water molecules, and (right) illustration of the net
dipole moment of a water molecule. The oxygen atom is negatively charged, which together with
the bond angle results in a net dipole.

Hindered rotational modes

In Chapter 10 we saw that polar molecules (molecules with a net dipole moment) in a gas
could be made to rotate by infrared light. This gives rise to a series of discrete and narrow
absorption lines, related to the various quantum mechanical rotational states. These
absorption lines could be sharp because the molecular rotation could continue freely for a
long time, corresponding to well-defined energies. In a liquid, the situation is quite
different.

Liquids are dense, with densities similar to those of solids. In molecular liquids, for
example water, the molecules have the freedom to reorient since they are not chemically
bound to their neighbors. However because of the high density, collisions with neighbors
occur very frequently. As a result, in liquids we do not see sharp lines related to continued
rotation such as we saw in gases. The orientation of molecules in liquids is continually
being changed by collisions with neighbors. The number of collisions will depend on
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temperature, with high temperature causing more collisions and faster randomization of
the molecular orientation. If the collision frequency is similar to or higher than the rotation
frequency, we call the rotation hindered.

Despite the thermal randomization of the molecular orientation, we can still see light-
induced dipole moment related to the in liquids containing polar molecules. As we will see,
electric fields can partly align polar molecules resulting in a net polarization, while
collisions are counteracting this alignment. The result is a low-frequency polarization that
increases with field strength, and that decreases with temperature. In the following we
derive the corresponding susceptibility with a model known as the Debye model.

Molecular alignment in polar liquids

To evaluate light-induced polarization in polar liquids, we will make use of
thermodynamics to describe the probability of particular molecular orientations. First we
will evaluate the potential energy of a polar molecule as a function of orientation relative
to an applied electric field. Consider a molecule with a permanent dipole moment of
magnitude po and oriented at an angle 6 away from the applied electric field. It can easily
be shown that the potential energy U of this molecule will depend on the angle as

U(8) = —p,E cos (0) (11.1)

We will call this potential energy contribution the interaction potential. For now, we
assume that E is a constant field, but note that our interaction potential U does not depend
on this assumption. We see that a molecule that is aligned with the field (6=0) has the
lowest energy. Rotating the molecule and moving the plus charge against the electric force
takes work, raising the potential energy.

Figure 11.13: Polar molecule in applied electric field.

In classical (non-quantum mechanical) thermodynamics the probability f(E;,) for
observing a particular state with total energy E;,; is described by Boltzmann statistics:

f(Etor) o e Frot/kT (11.2)

with kg the Boltzmann constant. High energy states are less likely to occur than low energy
states. We can use Boltzmann statistics to determine the probability of finding aligned
molecules, which will in turn allow us to find the total polarization vs. temperature.

The Boltzmann factor e ~Ftot/¥8T informs us about the (relative) probability for finding a

given orientation, but note that this orientation will be described by both the ‘misalignment
angle’ 0 as well as the angle ¢. To find a description of the total dipole moment, we will
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consider all possible orientations ¢, 0, and add up (integrate) their contribution to the total
polarization.

Po
do

N

Figure 11.6: possible dipole orientations within a range d6

A molecule with orientation ¢, 8 contributes a projected dipole moment along the field of
p - E = po cos(8) with E the field unit vector. The average dipole moment along the field
contributed by a molecule is thus given by

(p) ff po cos(8) f(U(O, $)) sin6 dpdo (11.3)
®,0

where the term sin() is required in polar coordinates to properly add up all possible solid
angles. Now note that the interaction potential U does not depend on ¢, meaning that the
integrand doesn’t depend on ¢. The integral over ¢ thus simply adds a factor 27, reducing
our double integral to the following single integral:

(5) o f po c0s(8) £(U(6, $)) 2 sin6 do (11.4)
%]

The term f (U (o, ¢)) 27 sin 6 is the relative probability of finding a molecule at angle 0,
which we can write as P(0). The term 2m sin @ effectively acts as a ‘orientational density
of states’, saying that there are not many orientations (‘states’) with perfect alignment, but
many different orientations that are misaligned by e.g. 90°. Substituting Boltzmann
statistics gives us

P(0) = e U/kBT 211 sin @ = ePoE c0s (O)/ksT 271 5in @ (11.5)

Our projected dipole moment as written above is only a relative measure, because our
expression for the angular probability distribution was not normalized to a total probability
of 1. To get an absolute result, we divide our result by the integrated ‘relative probability’,
giving'

 Note that this normalization resolves a question that you might have had: we don’t know the ‘absolute
energy’ of our molecule, only changes in its energy related to its orientation, so how can we evaluate the
Boltzmann factor. It turns out that adding an offset to our energy U(0) is equivalent to multiplying by a
constant factor. This constant factor will always be divided out in the normalization process, whatever its
actual numerical value. The result is thus independent of absolute energy, and only depends on angle-
dependent changes to the energy.
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Jo Po cos(6) P(0) db
x :

(p) (11.6)
fg P(6) do
The total integral for finding the average dipole moment per molecule is now
Jy Po cos(6) ePoEcosO)/ksT 2 s5in 6 do
(p)= (1L.7)
Jy ePoEcos ®)/ksT 27 sin 6 do
Realizing sin(6) d@ = —d(cos(0)) and renaming cos(0) as q we find
-1 1 -
o Jgmaetda [__jaeT%dg
(P)=-po = Po (11.8)

-1 1 _ '
fq=1exq dq fq=_1e X4 dgq

Where we have substituted x = poE/kgT. The ratio of integrals has a solution known as the
Langevin function:

1
L(x) = coth(x) — p (11.9)
Substituting x = poE/ksT we have found an average dipole moment per molecule of
R 1 PoE kgT
(P)=no [coth(;)—x] = Py [COth(kB_T)_pO_E . (11.10)

The Langevin function is shown below. Note that we observe several physically reasonable
results. For small applied fields (small x) we have small average dipole moment. Increasing
the field results in more alignment. Increasing the temperature reduces x, lowering the
average dipole moment. This makes sense: at higher temperature, the molecules undergo
more collisions, randomizing their alignment. Finally, for very strong fields the
polarization saturates. This also makes sense: when all molecules are completely aligned,
there is no further angle change that can increase the average dipole moment per molecule.

0:=75
0.5
0.25

-10 -5 5 10

-0.75

Figure 11.7: The Langevin function. Note the linear section for small argument, and the
saturation for large argument.

For small x (low field and/or high temperature) we see that the Langevin function is

approximately linear in field strength. A Taylor expansion shows that the slope in x is equal
to 1/3. For small fields we can thus write
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1 pE 1§

(ﬁ)=§pokB—T—3kBT : (11.11)
The total dipole moment per unit volume is now simply
ponP g (11.12)
3kgT

with N the number of molecules per unit volume, assuming these are all the same polar
molecules with permanent dipole moment po. Comparing with P = €5 yE we find a low-
frequency susceptibility contribution of

N p§

0) = ——0_
0 =3 7

(11.13)

due to field-induced (partial) alignment of the polar molecules.

Note that our susceptibility depends quadratically on the dipole moment. This makes sense:
each molecule contributes dipole moment proportional to po, but in addition, our ability to
align the molecule (the ‘torque’ we can apply on each molecule) also depends linearly on
po. Together these two effects give the observed quadratic dependence on dipole moment.

So far, we have considered a static electric field. In this case it is easy to understand that
thermal equilibrium following the Boltzmann distribution can develop. To understand the
response to time-varying fields we need to consider the dynamics of the orientation
process. Note that our expression for polarization represents a dynamic equilibrium: the
electric field tries to align the molecules, while collisions are randomizing their orientation.
If we were to suddenly turn off the field, the molecules will gradually return to an isotropic
(randomized) orientational distribution with zero average dipole moment. This behavior is
addressed phenomenologically in the Debye model. This model assumes that the
randomization of the molecular alignment takes place on a time scale described by the
rotational correlation time t. Upon suddenly turning off the applied field, the polarization
is expected to change according to

aw__F P(t) = B(0)e /" (11.14)
dt T

Note that this relation simply assumes that the relaxation process leads to an exponential
decay. This is thus only a phenomenological description of the relaxation process, ignoring
the details of the relaxation process. The rotational correlation time t is linked to the
viscosity n of the liquid according to T = nV /kgT with V the volume per molecule. For
water (H,O) the rotational correlation time is approximately 40 ps. This already tells us
that water molecules will not be able to react strongly to fields that change faster than once
per 40 ps, so we expect orientational polarization effects to occur at frequencies below tens
of GHz (wavelength at least several centimeters).

Optical response in Debye description

Previously we derived the susceptibility for zero frequency, and we have a relation
describing the polarization relaxation in zero externally applied field. We can now
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construct a relation that provides the correct static response and the correct exponential
response to sudden changes of the field:

dP . Np?
4+ p=
Tt T 3T

E) (11.15)

This equation is known as the Debye relaxation equation. Note that for static fields the time
derivative will become zero, producing exactly the static polarization from Eq. 11.12 which
we found using statistical mechanics. Also note that if the field is turned off, our relation

becomes exactly of the form of Eq. 11.14, describing the assumed exponential decay of
P(t).

We can now derive the frequency-dependent susceptibility by substituting a harmonically
oscillating field in Eq. 11.15, i.e. we substitute E(t) = E(w)e ™t + c.c. and we assume
that the response is linear, meaning the polarization will oscillate at the same frequency:
P(t) = P(w)e™* . Carrying out the time derivative, and dividing out common frequency
terms this gives

wtP(@) + P@) = P2 E(w) > P(w) = PO E (11.16)
roTlw @)= 3kgT @ @)= 3kgT1—iwt (@) '
Comparing to the definition of susceptibility we have found
Npj 1
x(w) = Po (11.17)

3kTey (1 — iwT)

This is the Debye susceptibility, representing the susceptibility contribution due to
molecular alignment in a polar liquid. The corresponding complex refractive index curves
including only the susceptibility from molecular reorientation are shown below for a
rotational correlation time of 100 ps. Note that there is maximum absorption when w=1/t.
In reality we would at least need to add the low-frequency electronic susceptibility of the
liquid to get more realistic results.

14 s
02 s
(o) K(w)
— 1 s —
0.1 s
1 ! ! o ! ! !
116 110 11d®  1ad' 1ad? 116 116 11d®  1ad' 1ad?
(O] (O]

Figure 11.8. Typical optical response predicted by the Debye relaxation model
The calculated curves show that we can absorb GHz radiation in a polar liquid, causing the

liquid to heat up. This is the operating principle of microwave ovens: food or drinks
containing water molecules are irradiated with strong EM radiation at a frequency that falls
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within the absorption band related to the rotational correlation time of water, causing heat
generation. Our microwaves are thus specifically optimized for heating water, and would
not necessarily work well for heating up other polar liquids. An interesting related fact is
that molecules in ice cannot easily reorient, so it is initially difficult to heat up frozen foods
using microwave radiation, until some of the HO becomes liquid.

Below is the measured complex refractive index of water on a log scale. Note that the low-
frequency (long wavelength) response matches the behavior predicted by the Debye model.
There is a large index contribution at wavelengths longer than Imm due to alignment, and
a related absorption peak for a wavelength of ~10mm, or a frequency of 30 GHz. At
wavelengths below 10 um (E >~124 meV) we see additional peaks in k largely due to the
excitation of vibrations. At a wavelength around 500nm we see minimum absorption,
followed by the onset of strong electronic absorption. We see that the transparency range
of water occurs between vibrational transitions and electronic transitions, which
conveniently happens to coincide with the visible range.
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Figure 11.9: The refractive index of water, from http://www.philiplaven.com/p20.html . Note the
Debye like response at wavelengths above 100 pm (frequencies below 3 THz), as well as some
vibrational lines between 1 um and 10 pm.
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Chapter 12 — Interaction of light with vibrations in solids

» Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html

In Chapter 10 we studied how molecules supports vibrational normal modes, with
frequencies that depend on the chemical bond strength and on the masses of the atoms in
the molecule. In solids similar effects occur, with the major different that the atoms are
bound in a three-dimensional crystal lattice. In this chapter we will see that non-metallic
compound solids support dipole active vibrations that extend throughout the entire crystal,
resulting in resonances and strong Lorentz-like contributions to the dielectric function at
IR frequencies.

Vibrational modes in a monatomic 1D lattice

In a crystal atoms are bound in an extended lattice, and the resulting vibrational normal
modes extend throughout the entire crystal. These extended vibrational modes are called
phonons. Crystals are much easier to deal with analytically than non-crystalline solids, but
much of what we do here for crystals applies to non-crystalline solids as well.

To understand the basic mechanical response of crystals we start with the simplest case of
a 1-dimensional monatomic lattice. The assumption of a monoatomic lattice (all atoms
have identical mass) implies that we are discussing an elemental solid such as pure Si or
even pure Al. As such we do not expect polar bonds, and therefore we do not expect dipole
active modes (see Chapter 10) and no strong phonon-photon coupling. Nevertheless, the
monoatomic lattice model provides valuable insight into vibrations in solids.

Figure 12.14

In our simple model, a unit cell (length a) contains only one atom with mass m, and there
is only one spring constant K that represents the inter-atomic binding potential. For
simplicity we consider only nearest-neighbor interactions, meaning that the force on a
given atom is affected only by the atoms immediately adjacent to it. The atoms are
numbered with a variable o with X, representing the time dependent position of atom o
relative to its equilibrium position. The restoring forces depend on displacement
differences. For example if atom 2 has moved more to the right than atom 1, atom 1 will
experience a positive force K(x2-x1). The total equation of motion thus becomes:

_K(Xa _Xa—1)+K(Xa+l_Xa):mXa

B (12.8)
= _K(zXa _Xa—l _Xa+1):mXa
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showing that the acceleration of atom o depends only on the distance to its neighbors, not
on its absolute position.'

We will again look for solutions where all atoms oscillate at the same frequency, i.e. all X
terms have the same time dependence, ", In this case the equation of motion becomes

mo' X, =KQX,-X,,-X,.,) (12.9)

We will see that this equation has traveling-wave solutions with the displacement of atom
o relative to its center position given by

X — 5 ei(kﬂza—a)ﬂt) —

i(akga—iwgzt)
y =X x e st (12.10)

p

where [ represents the number of the mode, z,, is the average position of atom a along the
chain given by ze=axa and kg is the wavevector of the B™ mode. The center positions of
the left and right neighbors are zq.1 = (aa)-a and z.+ = (aa@)+a respectively, resulting in
a displacement

idkga tikga
e

Xy =Xge (12.11)

where the time dependence has been omitted. We substitute this displacement in equation
12.9, resulting in:

_ ma)éxﬁeiakﬂa _ Kxﬁ, {ei(aﬂ)kﬁa + ei(a—l)kﬂa _ 2eiakﬁa} (12.12)
K ikga —ik za 2K
=} = —;{e e a) = 7[1—cos(kﬂa)] (12.13)

Note that the vibration frequency mp indeed only depends on the relative phase of the
neighbors. We now have a series of allowed modes with wavevector kg and angular
frequency wg according to

@y = \/%4 [l -cos(k,a) = \/%\/5 sin(kizaj

k
= 0, = 21/5 sin(iaj
m 2

This equation represents the phonon dispersion relation in a one dimensional mono-atomic
lattice. The dispersion relation is shown below. We see that low values of k correspond to
low oscillation frequencies. This is — as mentioned before — due to the small relative
displacement of adjacent atoms for modes with low k values, resulting in a small restoring
force.

(12.14)

I This last observation will become important later, since it implies that oscillations in which neighboring
atoms move approximately in-phase will experience little acceleration, resulting in a set of low frequency
phonon modes.
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-/a 0 + m/a k,
Figure 12.15

Note that the maximum oscillation frequency that a collective mode can have is 2(K/m).
This frequency occurs at k = + ©/a, in other words when adjacent unit cells (in this case
containing 1 atom) are 180 degrees out of phase. A wavenumber 7/a corresponds to a
vibration wavelength of 2a. For wavenumbers of magnitude >mn/a, the same physical
configuration can also be described by a wavenumber that is less than 7/a, so there is no
new physical situation outside the range -n/a < k < w/a. This range is known as the first
Brillouin Zone, or often simply ‘the Brillouin zone”.

Boundary conditions and degrees of freedom

In a 1D lattice of length L, each atom has 1 degree of freedom, so we expect that there are
a total of N of these collective modes, i.e. B € {1 .. N}, where N is the number of atoms in
the crystal, given by N=(L/a)+1. In a finite crystal, the eigenmodes are described by
standing waves with a wavelength that satisfies A=""/5. with Be {O,N} The case p=0
corresponds to translation, while the longest finite wavelength is described by k=n/L. The
shortest possible physically meaningful wavelength is 2a. The allowed wavevectors are
thus

|k|=O,£,2—ﬁ,3—”,...,2—ﬁ=2—”=£(N—1) (12.15)
L’ L L 24 2LAN-1) L

representing N allowed modes with evenly spaced k values, and N different wavelengths:

A=o0, 2L, %L %L .., 2a (12.16)

The discrete nature of k is generally not important for the optical properties of large
crystals.

In the limit of an infinite crystal, the left- and right-propagating modes need to be
considered as independent modes, suggesting that a subset of N atoms in this infinite crystal
would support 2N modes, which cannot be correct. In fact when calculating the number of
allowed modes on this subset of atoms with length L, the set of atoms needs to support the
entire wavelength which limits the allowed positive wavevectors to

i 27 4rm 6x 2r 2r _ 2z (N

L L L 2 2LAN-1) L 2

. , , s e 12.17
L L L )

b

with an equal number of negative wavevectors and one solution for k=0, bringing the total
number of modes for the set of N atoms to
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total

as expected. Note that the discussion above involved a monatomic lattice, for which the
vibrational modes cannot interact with radiation. To look at the interaction of light with
lattice modes, we must next examine the lattice modes of a diatomic lattice.

Vibrational modes in a diatomic 1D Lattice

a
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Figure 12.16

In this section we will discuss a linear chain consisting of atoms with masses M and m,
characterized by displacement amplitudes us and vs respectively, where s is an index
indicating the unit cell. Note that in this case a corresponds to the length of the unit cell,
and that a unit cell contains two atoms, one of each kind. A wavevector of n/a thus implies
a phase difference of 180 degrees between the behavior inside adjacent unit cells, not
between adjacent atoms. We will find that the internal structure of the unit cell adds an
internal degree of freedom, giving rise to two phonon modes for each value of the
wavevector.

Assuming next-neighbor interactions, the equations of motion are

Mii. = K(v

mv, =K(u,+u_,—2v,)

+v, —2u
* “‘). (12.19)

s+1

Again, we look for traveling wave solutions, where us, vs have the same frequency and
wavenumber, but different amplitudes. We anticipate solutions of the form

_ iska _—iax _ iska_—iax
V,=Ve e -, U, =ue e . (12.20)

Substituting these trial functions into the equations of motion, we obtain

-~ Mo u,=Kv,(1+e")-2Ku,

_ (12.21)
-ma’v,=Ku,(1+e")-2Kv,
For a solution to exist the determinant needs to be equal to zero:
2 ika
2K -Mw*) K({l+e™) _o (12.22)

~K(+e ™) QK -ma®)|

This leads to an equation of the order ®*, resulting in two independent solutions for ®? :
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somMeo' 2K (m+M)w’ +2K*(1-coska) =0

12.23
= a)2=£{(m+M)i\/(m+M)2—2mM(1—coska)} ( )
mM

This represents the dispersion relation for a diatomic linear lattice, schematically shown

below.
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Figure 12.17

Two separate ‘phonon branches’ are observed, a low frequency or ‘acoustic branch’, and a
high frequency ‘optical branch’. To understand the nature of these phonon branches we
will investigate the high and low wavevector limits: k=0 (or ka << 1) and k = *n/a.

For the latter case, k = +n/a, meaning that 1-cos(ka) = 2, so that the solution simplifies to

h =m£M{(m+M)i\/(m+M)2—4mM}

p (12.24)
=—M{(m+M)i(m—M)}

Hence, at the zone boundary we find two allowed solutions with frequencies corresponding
2K

tow’="—and o’ ="—.

m

For ka << 1 we can approximate cos(x)~1-%x? giving 1-cos(ka) = k*a*/2, leading to

a)2=£{(m+M)i\/(m+M)2—2mM%)}

mM
_om+M 3 mM )
=K .y {1i\/1 —(m+M)2 (ka) } (12.25)
2
szjLM{li{l— mM 2(ka) }}
mM (m+M) 2

hence we have two solutions for this range of ka. The solution with the + sign corresponds
to high frequency modes:
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@’ ;2Km+M=2K(i+Lj=2—K (12.26)

mM m M Y7
where W is the reduced mass of the unit cell, L = L + L
u m M

2
The ‘- case leads to @” = UCL)L, = o= Lka showing a linear
2 m+M 2(m+ M)

dependence of ® on k at low frequencies.

Three example curves are shown below for identical transverse spring constant Kr and a
fixed longitudinal spring constant K;=1.4Kr. Note that the total mass affects the acoustic
branch slope, the reduced mass affects the maximum resonance frequency, and the mass
ratio determines the frequency splitting at the zone boundary (k=n/d with d the unit cell
length).

1 p=10.4amu m;=19 | J p=13.9amu m=23 | | n=6.4 amu i
]
i m,=23 | m,=35 | | b
2 - . © - - o -
8 _\ g __\ 8 _
s S = y=7
] ] m,=80 |
7 Mor=42 7] 7 M1or=58 | ] Myor=87
y T : T y T T v
0.0 05 1.0 0.0 075 1.0 0.0 0.5 1:0
k (n/d) k (n/d) k (n/d)

Figure 12.18 Example dispersion curves for phonons assuming a fixed transverse spring constant
Krand a fixed longitudinal spring constant K; = 1.4 Kr.

Interaction of radiation with lattice modes

In solids with more than one type of atom, the different atoms will generally have slightly
different charges. This means that the different atoms will experience forces in different
directions due to an applied field, and consequently, a macroscopic polarization due to the
lattice can be induced by an electric field. The natural frequency of oscillation of such a
polarization corresponds to the “optical modes™ calculated previously for the diatomic
lattice.

Now the wavelength of light is always much greater than the lattice spacing, especially for

the infrared region where the frequency of the EM wave is resonant with the optical modes,
ie. A>>a.
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0 + T/a k

Figure 12.19 Dispersion curves for phonons (lattice modes) and photons, assuming for now that
there is no change in index due to the lattice

Hence the optical wave interacts with very long wavelength lattice modes (compared to a).
This means that k=0 for the optical lattice modes, which is convenient as it simplifies the
mathematics. Since k=0, we can assume that the applied field is spatially uniform, which
is true over many thousands of atomic spacings. Hence,

E{t)=Ee"™. (12.27)
The coupled equations for displacements u and v are then

Mii, — K (v, +v, = 2u,) = +qu€'_"”” ’ (12.28)
—iwt

mv, —K(u,+u,_,—2v,)=—qE e

Since k~0 the phase term e'*“~1, leading to us(t)=uoe™* and vs(t)=voe ™' independent of s.
Substituting u and v gives

(2K - Mo iy — 2Kv, = +4E,

(12.29)
- 2Ku, + (ZK - ma)z)vo =—qk,
For this, the solutions for amplitudes uo and v are of the form
+qE, /M —qE,/m
Ug=—5 5 V=5 & (12.30)
W; —@ Wr — @

where or is the resonant frequency of the optical modes atk =0, @, = 2% . This is

sometimes referred to as the "transverse optical phonon" frequency, hence the subscript T.
As before, p is the reduced mass.
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Optical properties of polar solids

The lattice contribution to the polarization is
F, =Ndu,—v,), (12.31)

where e is the effective charge on the atoms in the lattice (not usually equal to e.) The total
polarization is = fz +Pbou,,d, where again, Ppouna 1s the electronic polarization. So the
total dielectric function is

P P Ne
g(w)=14+——=1+bownd 4~ (y —v). (12.32)
g E &Lk € FE

ek, 1
But, u,—V,=—"—>—"7,so that
U O —@

P 2
gr(a)):1+ i =1+ bound + Ne 21
EO E e0 E eo y24 C()T -
Ne’ 1
=1+Zelectronic+—ﬁ
e0 ,Ll C()T—a)

Ne? 1

2

2

(12.33)

=¢g,(00) +

2
€ U Op — O

Where &:(0) is the high frequency dielectric constant. Note that this is not truly the value
at ® — oo, which is always 1, but is usually taken to mean the value at frequencies well
above wr, yet well below any electronic resonances. The overall behavior of &(®) is
sketched below. Note we have not included damping, as it is not too important here. We
will look at the effect of damping a little later.

We can use this relationship to find a value for the low frequency dielectric constant, £0),
using

Ne’ /e, u
2

g.(0)=¢g.(0)+ (12.34)

T
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The Lyddane-Sachs-Teller relationship
From our expression for &(®), we can write

[gr(O)—gr(oo)]a)i =Né' /e, u (12.35)
so that,

[£,(0)—&,(0)]0;
-’

£, (@)=¢,(0)+

2 2
, —Q
— s ()2

2 2
L8600 _g@a;
0, -0 0 -0 o -0

2

(12.36)

_ 500} ¢, (0)0’
- 2

2
W; — @

This shows us that e(w) = 0 for &, (O)Cl)? =SV(OO)CO2 . This frequency is labeled o, the

"longitudinal optical phonon" frequency, at which &, = 0, rather like the plasma frequency
for electronic polarizability. Hence,

@G =0cf or £,(%) _ or (12.37)

£(0) o

Which is known as the Lyddane-Sachs-Teller relationship, which works quite well for polar
diatomic materials. Two examples:

GaAs: o/or = 1.07 VE(0)/ &g, (0) = 1.08
KBr: o/or = 1.39 \E(0)/ g (o) = 1.38

[Ref: C. Kittel, Introduction to Solid State Physics, (Wiley)]
Note that oL > or, always. Hence g(0) > g(0), as might be expected.

Similar to plasma oscillations, w is the frequency for longitudinal long wavelength lattice
oscillations.
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TO phonon LO phonon

Figure 14 Relative displacements of the positive and negative ions at one instant of time for a wave
in an optical mode traveling along the z axis. The planes of nodes (zero displacement) are shown; for
long wavelength phonons the nodal planes are separated by many planes of atoms. In the transverse
optical phonon mode the particle displacement is perpendicular to the wavevector K; the macro-
scopic electric field in an infinite medium will lie only in the *x direction for the mode shown, and
by the symmetry of the problem 9E/ax = 0. It follows that div E = 0 for a TO phonon. In the
longitudinal optical phonon mode the particle displacements and hence the dielectric polarization P
are parallel to the wavevector. The macroscopic electric field E satisfies D = E + 4%P = 0in CGS
or €E + P =0 in SI; by symmetry E and P are parallel to the z axis, and 9E./dz # 0. Thus
div E # 0 for an LO phonon, and €(w) div E is zero only if €(w) = 0.

Figure 12.21

Refractive index of polar and ionic solids

The behavior of the refractive index for a transverse optical phonon resonance is similar to
that of a Lorentz oscillator. In our model the only difference is that we have ignored
damping. In real materials phonon modes also undergo damping or scattering (change of
wavevector direction and magnitude), resulting in a finite I'. In Fig. 12.22 we show the real
and imaginary parts of the refractive index for AISb and the corresponding reflection
spectrum.

mp=7x1013 rad/s; 1=3.5x10"" /s; ©,=6x10" rad/s

200

100

Dielectric function

-100

Refractive index

\ 1 L 1 PR ' 1 b 1 P | L

20 22 24 26 28 30 32 34 36 38
A (um)

[ G
O N B O OOODN

Figure 12.22: Complex dielectric function and refractive index of AISb based on fit of
experimental data by Turner and Reese
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Reflectance of polar solids — Reststrahlen band

In the absence of damping, the reflectance must be unity in the region or < ® < ®r, again
just like for electronic transitions (see figures below). This region is called the
"Reststrahlen”" band, where light cannot propagate in the material, so must be absorbed or
reflected, see Fig. 12.22. For sufficiently large negative &’ we have a large imaginary
index, causing R to be very close to 1.

©,=7x10" rad/s; 1=3.5x10"" /s;  =6x10" rad/s

1F ——d=1um 1

——d=10um
d=100um

——d=1000um

Transmission

Reflectance

0 " " L L h " L L "
20 22 24 26 28 30 32 34 36 38
A (um)

Figure 12.23: Reflection spectrum of AISb and calculated transmission spectra for four thickness
choices, ignoring multiple internal reflections (unphysical for thin films, done here for illustrative
purposes)

Effect of phonons on transmission spectra

In the preceding sections we learned that there are dipole active phonons in polar and ionic
crystals. In many cases the large number of participating atoms leads to a large
modification of the infrared response, resulting in a Reststrahlen band (large reflection)
between wr and or. Just above @y there is a frequency where n~1, resulting in a reflection
minimum in air.

Based on the reflection spectrum shown in Fig. 12.23 we expect that compound dielectrics
are opaque for wavelengths in the Reststrahlen band. Intuitively one might expect a
transmission maximum corresponding to this reflection minimum, but in practice for thick
materials (e.g. a 1 mm thick slide) this is not observed. The reason for this is that the
absorption coefficient at this wavelength is still sufficiently large to produce almost zero
transmission, see Fig. 12.23. Note that for a Imm thick slab of AISb the no transmission
peak is observed when n=1. Also note that the onset of ‘zero’ transmission does not
coincide with or (A=29.5 um) but instead occurs at higher energy (A ~ 27 um) due to
absorption.
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Coupled Photon-Phonon modes: Phonon-polaritons

Recall that we started out by drawing the dispersion of light (® versus k) as a straight line.
o= ck/ 8,.(00 . However, clearly close to the vibrational resonance frequencies (o~ 10

rad/sec), & is clearly strongly varying and o versus k will not be a straight line.

For o ~ 0, the refractive index is given by /&(0), while at high frequencies it is given by
\J€(0) . In these limits, the wave is described as "photon-like". However, as ®

approaches or, the index increases, and the group and phase velocities of the wave slow
down to be close to that of the lattice modes. Here, the wave propagates as a strongly
coupled polarization - electric field wave, with velocity characteristic of the lattice mode.
Here the wave is described as "phonon-like".

Figure 12.24

Solids with more than one atom per unit cell

This can get complicated, but generally, we see several phonon resonances, as illustrated
below for GeOs. In this case,

Ne’ /e, u,
£, (w)=¢g,(0)+ f,a)z—oj
j

Tj_

: (12.38)
w
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Fig. 5. Reststrahlen spectrum of tetragonal GeQ, with E L ¢. Solid line is classical oscilla:or
fit {o experimental data (open circle). (From Kahan et af. f6])

Figure 12.25
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Examples of n, x spectra

These are taken from Optical Properties of Solids, by Palik. The next few pages will show
some representative materials types and we will make some comments on these.

Lithium Fluoride (LiF)
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Fig. 6. Log-log plot of n ( ) and k (——--~) versus wavelength in micrometers for lithium

fluoride. Note the incredibly small values of k in the transparent region centered near 1 um.

Figure 12.26
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Gallium Arsenide (GaAs)
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Lithium Niobate (LINbO;3)
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Chapter 13 — Optical properties of semiconductors

» Corresponding handouts are available on http://kik.creol.ucf.edu/courses.html

In chapter 3 we described the optical properties of insulators. We discussed that the valence
electrons in insulators are relatively strongly bound to the individual atoms in the material,
resulting in high resistivity and low absorption throughout the visible spectrum. In chapter
6 we discussed metals, in which the valence electrons can be considered free, leading to a
high conductivity, negative ¢ at low frequencies and high absorption and reflection. In this
chapter we will discuss an intermediate case: semiconductors. In semiconductors, the
valence electrons are generally ‘somewhat’ bound to the atoms in the material, with
binding energies of up to several eV. As a result, at room temperature these materials
contain a small concentration of electrons that have broken free from the atoms, resulting
in a small conductivity. This is the origin of the word ‘semiconductor’.

The optical response of semiconductors is largely due to electronic transitions. In order to
understand the possible electronic transitions, it is important to understand the electron
dispersion relation or electronic band structure in semiconductors.

Electronic Band Structure

As was already mentioned in Chapter 5, the Lorentz model is not an accurate description
of solids. While isolated atoms have well defined electronic states representative of the
atom, as individual atoms are brought together the atoms start to interact, leading to shifts
in the electronic energy levels. At the densities common in solids (~10?2 atoms/cm?)
significant interaction occurs, causing levels to broaden out into bands, as schematically
indicated in Fig. 13.1. The energy bands still retain some of the characteristics of their
atomic origins. For example, in GaAs, the valence bands are mainly p-like in nature, while
the conduction band is s-like.

Atom Solid

Energy

Figure 13.1

In covalent bonded solids, (e.g. GaAs, Si, Ge) outer electrons are quite evenly shared
between different atoms, so the electron orbitals are extended throughout the crystal, and
the energy bands corresponding to these orbitals are very broad. However in ionic bonded
solids, (e.g. NaCl, MgF,, KCl) electrons are much more localized and the bands are
narrower. The absorption spectra of these materials retain more of the characteristics of
atoms. (See figures 3.6 and 3.7 in Wooten.)

In order to understand the resulting energy band structure, we will use a quantum

mechanical description. In quantum mechanics, the behavior of an electron in an electric
potential V(x) is described by the Schrodinger equation
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0’ 0
- =ih— 13.1
{ e +V(x)}‘{’(x,t) ih 5 ¥ (x,t) (13.1)

Here W(x,t) is called the wavefunction of the electron. The wavefunction ¥ has some
similarities to the electric field in the scalar wave equation. For example, the probability of
detecting photons is proportional to EE* or |[E]> (where * indicates taking the complex
conjugate) while the probability of detecting an electron is proportional to WW* or |¥*. As
such WYW* represents a probability density function. The operator between the square
brackets is called the Hamiltonian, also written as H. Similar to the decomposition of
vibrations into normal modes, the allowed electronic states can also be described in terms
of ‘normal modes’ or Eigenfunctions of the Schrodinger equation. These eigenmodes
satisfy the time independent Schrédinger equation:

n* o’
{—————+V@ibﬂ%ﬁ=E¥&J) (13.2)
where the time dependence of the eigenmodes is harmonic, as given by
. 0
zhE‘P(x,t)zEP(x,t) (13.3)

The Schrodinger equation in free space (V(x)=constant) leads to plane wave solutions of
the form. l)yk(x) :Ael(k"x_at)

probability adds up to 1, and E=7w (see Eq. 13.3). Note that the time dependence is only
related to the fotal energy of the wavefunction (kinetic plus potential). Substituting the
plane wave into the Schrédinger equation we find that the total energy of a free electron is
given by

. Here A is a normalization factor to ensure that the total

271.2
E=V+h2’l:: : (13.4)

where in free space V is some constant potential energy (which we can arbitrarily set to
zero) and the other term constitutes the kinetic energy, with k. being the electron
wavevector and m the electron mass.

When an electron travels into a region with a lower potential energy (e.g. closer to a
positively charged atom), the kinetic energy goes up, and the wavefunction acquires a
shorter wavelength. In a sense, the behavior of electron waves entering a low potential
region resembles that of light entering a high refractive index region. Just as for light,
changes in wavelength give rise to reflections, in this case electron wave reflection. Inside
a crystal, electrons experience a periodic potential due to the regularly spaced atomic cores
in the crystal lattice, leading to multiple electron wave reflections, and electron wave
interference. The multiple reflections result in eigenmodes that are affected by the exact
shape of the periodic potential V(x). For an infinite crystal, the Eigenfunctions describe a
state with a well-defined energy and a corresponding spatial distribution of the electron
throughout the entire crystal. In a simple linear lattice with lattice spacing a, we have V(r)
= V(r+a), as shown below.
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Fig. 5.3 The crystal potential seen by the electron.
Figure 13.2

Since the electrons are bound in a periodic potential, the Eigenfunctions will also have a
periodic character. The periodicity of V(x) implies that a wavefunction which satisfies

{‘%a%* V(x)}p(x): E(x) (13.5)

should also satisty

[—i 622 +V(x)}‘1’(x+ a)=E¥(x+a). (13.6)
2m Ox

Wavefunctions that satisfy condition can be described by functions of the form!
l//k(X)=uk(X)€lkEx. Here wui(x)=ui(x+a) is a periodic wavefunction called a Bloch

function, which can be interpreted as (approximately) describing the electron distribution
within a single unit cell. The phase term e represents a phase difference of the
wavefunction in adjacent unit cells. For core electrons (those tightly bound to the nucleus)
ur(x) represents a strongly localized wavefunction similar to the electron orbitals around a
hydrogen atom. The less strongly bound valence electrons are described by more extended
wavefunctions that have significant amplitude in between neighboring atoms. Free
electrons are described by wavefunctions with a high energy E, such that the wavevector
remains real in between atoms (where V(x) is high).

Conduction Ion
band T

—v
Bound —/
states

1403)

Figure 13.3

To understand the main features in the electronic band structure, it is instructive to start
from an electron traveling in a periodic atom lattice with spacing ¢ and zero binding

i See for example Solid State Physics, N.W. Ashcroft and N. D. Mermin, Chapter 8
ii Note that in this case the phase function is continuous in space, in contrast with the description of phonons,
where the phase term represented the phase of a vibration at discrete points in space
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potential. The dispersion relation will thus be exactly that of a free electron, as shown
below.
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Figure 13.4

For fast electrons, we find that k will exceed ©t/a. Such rapidly varying wavefunctions can
be split up into a part that describes the overall phase difference A between adjacent atoms

(-m<A@<n) and a part that describes the behavior of the wavefunction within a unit cell,
for example

157 2 =057 057
—X I—X 1

l//k(x)zel @ =e ® e ¢ =uk(x)eil a” (13.7)

i2m/a

Where u(x)ze can be seen to satisfy u(x)=u(x+a), and the phase difference

between neighboring unit cells |A@|= 0.57 is indeed between -1 and 7. This illustrates how
high-energy solutions can be described by an overall low k-vector and a Bloch function.
This enables us to represent all electron states in this 1D lattice inside the first Brillouin
zone, also shown below.

The use of only the first Brillouin zone for the display of the electron dispersion relation is
called the ‘reduced zone scheme’:

AE AE

2n/a -n/a 0 Tc/a 2m/a -Tt-/a 0 m/a

Figure 13.5 The dispersion relation for an electron in a periodic crystal represented in the
reduced zone scheme for zero binding potential (left), and finite binding potential (vight).

As in the case of phonon dispersion, the zone boundary represents a situation where there
is neighboring unit cells are 180° out of phase. This again leads to a splitting of the energies
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at the zone boundary. The splitting gives rise to characteristic energy bands that are
separated by energy gaps in which no electron states exist, as illustrated in the right side of
the figure.

Electrons are Fermions, meaning that no two electrons can occupy the same quantum state.
Since there is only a finite number of electrons available in a crystal, the available low-
energy states are occupied by electrons up to a certain maximum energy. An important
feature of semiconductors and insulators is that the highest filled energy state lies just
beneath an energy gap (called ‘the band gap’), while the states just above the gap are
unoccupied. The filled band below the band gap is the valence band, and the empty band
above the band gap is the conduction band.

Charge carriers — firee electrons and holes

The existence of a completely filled band has important consequences for the conductivity:
an electrical current requires the existence of a net electron momentum, for example more
electrons traveling to the right (positive k) than to the left (negative k). In insulators and in
semiconductors (at zero Kelvin) all available positive and negative k vector states in the
valence band are filled, resulting in zero conductivity. In semiconductors, the energy gap
is sufficiently small that at room temperature some valence electrons are thermally excited
into the conduction band (‘broken free from an atom’), generating a free electron and
leaving behind a positively charged atom. The resulting unoccupied electron state in the
valence band is called a sole. Both these states are free to move through the crystal, giving
rise to a finite conductivity at room temperature. Hence the term semiconductor. Free
electrons and holes also affect the optical properties of semiconductors via free carrier
absorption, as described later in this chapter.

Effective mass

In the description of the optical properties of semiconductors it is important to know the
‘effective electron mass’. For free electrons the electron mass follows from the relation
between E and k:

nk’

2m

e

E=V+ : (13.8)

As is clear from the band structure shown above, the dispersion relation in a periodic lattice
is no longer a simple parabola for all k vectors. However for energy levels close to a band
gap (e.g. near the ‘zone center’), the dependence of E vs. k is approximately parabolic. This
allows us to ascribe an effective mass, m*, that fits the band curvature according to

272
Eh)~E, + z’:* . (13.9)

The effective mass will be dependent on the exact band structure, and as a result will vary
from semiconductor to semiconductor. For most semiconductors, m.* lies in the range 0.1-
1.0 m.. The figure below shows a sketch of a band structure near the zone center, and
around the band gap. Note that there are two valence bands that have the same energy at
k=0, but that have a different effective mass. This is a situation that occurs in many
semiconductors. As a result, holes can have different effective masses, respectively the
heavy hole mass m*un and the light hole mass m*_p.
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Figure 13.6 Fundamental Absorption Processes

Absorption processes in direct-gap and indirect-gap semiconductors

The figure above includes the main absorption processes that can occur in a direct-gap
semiconductor. A direct bandgap semiconductor is a material in which the minimum of the
conduction band (CB) occurs at the same k-value as the maximum energy in the valence
band (VB). A direct transition is a transition that does not require a change in the
wavevector. Common direct absorption processes are

interband absorption (VB-CB or VB-VB)

- VB-to-exciton state absorption,

- VB to (unoccupied) donor, acceptor, or mid gap state absorption
(occupied) donor, acceptor, or mid gap state to CB absorption

Free-carrier absorption is an indirect (phonon-assisted) process, which means that the
initial and final states have different k-values. All these processes will be summarized
below.

Some semiconductors have an indirect gap, which means that the longest wavelength

(lowest energy) absorptions must occur with the assistance of a phonon, making the
absorption edge less sharp than in direct-gap semiconductors.
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A sketch of a plot of absorption coefficient versus photon energy and wavelength for a
"typical" semiconductor is shown below. The various absorption processes in each
wavelength region are labeled on this graph.
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FIGURE 2 Absorption spectrum of a typical semiconductor showing
a wide variety of optical processes.

Figure 13.8

In the following paragraphs, we describe these processes in some more detail.

Interband absorption

The dominant feature of the absorption spectrum of a semiconductor is the interband
absorption. We will deal with direct-gap semiconductors here, and we will look briefly at
indirect gap semiconductors at the end.
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Density of States and Fermi Golden Rule

Optical absorption in semiconductors is due to light-induced transitions from occupied
electron states to available unoccupied states. For that reason the number of available states
is an important quantity. For continuous energy bands this is described in terms of the
Density of States, g(E). For isolated atoms the density of states (DOS) corresponds to the
number of available states per atom per unit energy. This means g(E)dE is the number of
states (per atom) in the energy range (E, E+dE). This quantity is used in the quantum
mechanical calculation of the transition rate W from initial state k to final state n of the

atom upon illumination with photons of energy 7 :

W, :2—”E§|ykn2g(Ek+ha)) (13.10)

k—n h

This relation is called the Fermi Golden Rule. Here Ejis the applied electric field strength,
and tu, is the transition matrix element (units C-m in this form) for states k and n. This
tells us how strong the transition is. For some states, t4,—=0 (forbidden transition).

We can relate the transition rate for each atom W, to the absorption coefficient, since the
absorption rate W of photons with E=fiw for N atoms per unit volume corresponds to an
absorbed power per volume:

NhaoW,_,, =rate of energy absorbedper unit vol.

(N =atomicdensity)

I Lovs (13.11)
unit volume  unitarea x unit length
_ I abs — ﬂ
unitlength  dz
/i
di =—Nnh a)VVk—m
'z

We can express W in terms of the irradiance /, since both I and I depend on E¢>. We will
assume that Ex=0 and we will write the photon energy as E=iw so that g(Ext+7m)=g(E).

E02 _ 21
nece,
dl 27N 2 2
S o220 Phag(BE)——1
% 5 || hax(E) nee, (13.12)

> wg(E)

4N
a(w)=——/u,
nce,

This shows that the absorption coefficient depends on the dipole transition matrix element,
how many atoms are present per unit volume, and on the density of states g(E), given by
the number of states per atom in the range (E, E+dE).

For a semiconductor, which has continuous energy bands that describe collective electronic
states of the crystal, we need to find an analogous ‘number of states per atom’. Instead of
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‘states per atom’ we will use the function p(E)dE to describe the number of states per unit
volume in the range (E, E+dE), so that effectively g(E)N = p(E). (‘states per atom times
atoms per volume equals states per volume’). Therefore we expect to arrive at an
expression that looks of the form

a(w) = 4—

d 2a)p(E). (13.13)
nce,

lllnk

We will see in the following that in this expression the function p actually needs to be
replaced by a quantity p;(E) known as the joint density of states.

To calculate the interband absorption, we need to calculate the density of states p(E) based
on our known E(k) as given by the effective electron mass m*. First, we need to look at
how many k values are available in a given band. Since the allowed free electron states
described Bloch waves, then

w, et = exp{i(kxx+kyy+kzz)}. (13.14)

To calculate the number of allowed states per unit volume, we demand that a given volume
contains only ‘complete waves’. This is equivalent to applying periodic boundary
conditions, i.e. demanding

v, (5, ,2) =y (x+L,y,2) =y, (x,y+L,2) =y (x,y,z+L.) (13.15)

where Ly, Ly and L, are the dimensions of the volume of interest. This requires that
explik, (x+L,)]=exp|ik, x|, and similarly for Ly and L,, which leads to the following allowed

values of k:
2 2 2 N. -1
k=" k=" k=", =0 k142, 4 5 (13.16)
L Ly L. 2

Where V; is the number of unit cells along L;, ensuring that the maximum k vector is n/a.
The allowed k-values are thus evenly spaced in k-space (or reciprocal space). Each of
these k-vectors represents an allowed electron state. Hence we can say there is one allowed
state per unit volume of k-space, where the “unit volume” in k-space is:

Ak = Ak, -Ak, Ak, =25 .22 28 : (13.17)
’ L L LV

X y z

with V the considered volume of the semiconductor crystal.

To calculate the density of states around some energy Emax above the bottom of the
conduction band, we first calculate the number of allowed k-values that correspond to an
energy E(k) below Enax, and then we take the derivative of this number with respect to E
to find the number of states within an energy range dE. For a parabolic band, this implies

272

h
E(k)=——<E. 2mE
2m*

: kmax: ezmax
h (13.18)

ax
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Now the number of k vectors that have satisfy |k|<|kmax| is given by the volume of a sphere
in reciprocal space with radius k.., divided by the unit volume Ak:

NS

Figure 13.9

Hence the number of k-values/unit volume in (k, k+dk) = p(k)dk is given by the surface
area of the sphere * dk /V, divided by Ak, i.e.

Arkdk |V Amkidk |V k>dk

K)dk = _ _
k) Ak STV 2n

(13.19)

The number of electron states in that same interval is actually 2p(k)dk since each k-value
can contain two electrons with opposite spin. If can now rewrite this density of states in
into a quantity that represents the number of states in an energy interval dE, we will have
found p(E). This can be done by multiplying 2p(k) by the derivative ofk to E:

2 p(k)dk = {2 (k) %}dE = p(E)dE (13.20)

Now, for a parabolic band,

nk’

E(k)= e (13.21)
so that
2m*E
k= FER (13.22)
giving

140



de K d( [2m*E
E)=2p(k) = =2. 2
PEV =20 1 27z2dE[ n J

ES ES
. 122m2E /2772 i(E
27 7] e dE

1 Zm*% 1
:>p(E)=27[2( e jEz

[(SIE

) . (13.23)

If we define the top of the valence band as E=0, then the lowest energy in the conduction
band becomes E=E,. The density of states for electrons in the conduction band then
becomes

1 (2m,*) ;
pg(E)ZF(h—zj (E-E,). (13.24)

The figure below shows a sketch of the resulting electron density of states function.
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Figure 13.10

For the light and heavy holes, the densities of states defined at an energy E with respect to
E=0 at the top of the valence band are

1 2m )\ 1

/JLH(E)=27r2 (—th j(—E)z, (13.25)
1 (2m,, *)',

pHH<E>=2”2[ 4 j(—E)z (13.26)

Absorption due to interband transitions

For optical absorption to occur, we must have energy conservation: E=F+#/im as well as

momentum conservation: ik=hk+hk, where k is the optical wave vector and k;, krare the
initial and final electron wavevectors. Since the photon momentum is very small, it is a
very good approximation to demand that hk~Fhk; so that transitions are essentially
“vertical” or “direct”. For HH-CB transitions, the initial and final energies are
272 272
Ei:EV:—hk , E/.:Eczhk*+Eg. (13.27)
2m,y,, 2m

e
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Figure 13.11

Hence the requirement for a direct transition with energy Eirect 1S

2712 2712 2712
E e =Ec(k)—EV(k)={hzk* +Egj—£— nk szg+ ok , (13.28)

2myy, 2y

where we have introduced the heavy-hole reduced mass uy as:

1 1 1
t— (13.29)
Hygy M, My,

For LH—CB transitions, we simply use the light-hole mass in place of the heavy-hole mass
to find the appropriate reduced mass, sn. Be careful not to confuse this effective mass
with the transition matrix element zu,. The expression we found for the energy difference
in a direct transition links the energy to the wavevector.

Optical absorption doesn’t just require a high density of initial states; there also must be
allowed final states at higher energy. If we are to count the number of states that can
contribute to an absorption event with energy difference Aw, when need to count the
number of allowed k values in the valence band that are separated from the conduction
band by an energy hw. Since we have an expression for Egireci(k) = Ec(k)-Ey(k), we can find
the joint density of states p; using Edirect(k) using the approach that we used previously for
finding p. based on E(k). In other words, we can calculate the ‘density of momentum
conserving transitions per unit volume’, known as the joint density of states:

dk
dE

direct

P, (E)=2p(k)

(13.30)

Note that p(k) is the same quantity as in the previous analysis: it still represents the number
of states available in an interval dk. Hence, the joint density of states is
1 2ILI % 1

z(h—zj (E-E,). (13.31)

p,(E)= by
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This result, which followed from the requirement of energy conservation, momentum
conservation, and the conduction and valence band structure near the band edges (described
by electron and hole effective masses), allows us to calculate the absorption coefficient
according to the Fermi golden rule (Eq. (13.10)):

20

Ot(w)— ﬂnk w,QJ(E)—

/’lnk

Z@—QZ (hw—Eg)%. (13.32)

This expression is only valid for i > E,. The details of the transition matrix elements are

tricky to calculate and as a result we cannot easily use the above formulation for a
quantitative prediction of the absorption spectrum. However, sufficiently close to the band
edge, o and |uwx/* can be considered approximately constant, and in practice the product

o|unk|* remains approximately constant over a significant frequency range, so that we can
write:

a(w) o« (u) (ho-E, ). (13.33)

The graph below shows the example of interband absorption in InAs, where the above
analysis works well (from “Optical Properties of Solids”, M. Fox). Here, o*(®) oc (hw -

0.35 eV), as predicted above, where E; = 0.35 eV. For comparison the effect of a fixed
transition matrix element is plotted as a dashed line.

| {) T T T T T T T T T
@
InAs
0.8F  room temperature -
= 06f g
04 1
o
0.2 g
(E-0.35)"0’|
0.0 ' — : :
0.3 0.4 0.5 0.6

Energy (eV)

Figure 13.12

In most cases, the effect of excitons (a bound electron-hole state due to Coulomb
interactions, see next section) causes the density of states to be enhanced for Zm = E,, so

that the absorption coefficient has a rather different shape than the (7w-E;)"? dependence.
(See e.g. the figure for GaAs in the next section.)
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Exciton absorption

In a semiconductor, an excifon refers to a bound state of an electron (¢) and a hole (h). The
electron is excited out of the valence band, leaving behind a hole. The electron can become
bound to the hole due to Coulomb interaction, resulting in hydrogen-like bound states (n=1,
2, ...). The e-h pair is free to move about the material as a single, uncharged particle. In
this bound state the electron still has characteristics similar to that of free electrons, but its
energy is a little lower than that of conduction band electrons as a result of the Coulomb
interaction, and similarly the bound hole state lies a little above the valence band. The
exciton binding energy, E, is the energy required to separate the pair, producing a "free"
electron in the conduction band and a free hole in the valence band. The existence of
exciton states allows the absorption of light by valence electrons at energies slightly lower
than the bandgap energy. In these VB—exciton absorption a bound e-h pair is created in
any of its allowed states (n=1,2, ...), giving rise to multiple absorption lines just below the
band-to-band, or interband absorption energy.

Figure 13.13 Schematic representation of an exciton in real space (left) and in k space (vight).
The sketch on the left assumes an equal electron and hole mass, while in general the hole has a
larger mass.
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Figure 13.14 Sketch of VB —exciton absorption (left) at low temperature, resulting in absorption
lines just below the interband absorption, and (vight) at elevated temperatures, resulting in
reduced exciton lifetime, and therefore an ill-defined exciton energy and broadened absorption
lines
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For most semiconductors Ey is 5-20 meV, which is on the order of kT at room temperature.
As a result, that exciton lines are generally not sharp and not clearly separated from band-
edge absorption unless the sample is cooled, as illustrated in the above sketch, and in the
figure below for GaAs at 4 K and 300K.

T
E 101 4K i
*u B Is -
) - exciton
Z o5 /
= 2
o L
o
x L
a L
0 & b - 1 1 1 1 - a
< 1.515 1.520 1.50
PHOTON ENERGY (eV) PHOTON ENERGY (eV)

() (b)

Figure 7.5. Absorption spectrum of GaAs at (a) low temperatures (after
Ref. 7.4) and (b) room temperature (after Ref. 7.5).
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Fig. 6.10 A Ga impurity in a Si crystal. The extra hole migrates through the crystal.  Fig. 6.11 The acceptor level in a semiconductor

Figure 13.16

Impurities added to a semiconductor can usually be categorized as "donors" or "acceptors".
Donors are atoms that have one extra valence electron compared to the atoms in the
surrounding lattice. For example, in silicon or germanium, which are group IV elements,
As or Sb atoms which are group V elements have an extra valence electron. The extra
electron does not participate in bonding orbitals and hence is only weakly bound to the
impurity by the Coulomb force. At low temperature, the electron orbits around the impurity
in a way that can be modeled by the Bohr model of the atom. The binding energy, Eq, is
typically of the order of kT at room temperature so at room temperature the electron is
ionized into the conduction band and is free to move around as a conduction electron.
Acceptors have one valence electron less than the host material, e.g. a group III element in
Si or Ge. In this case, the acceptor provides an empty state or a "hole" where a valence
electron could sit. If this hole moves away from the acceptor (i.e. if a neighboring valence
electron occupies this available state), the acceptor becomes negatively charged and the
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positive hole may end up being bound by Coulomb interactions, just like the donor
electrons. Again, though, the binding energy is small and at room temperature, the holes
may move freely around as positive charge-carriers. Because these are so weakly bound,
the VB-acceptor and donor-CB transitions are not seen at room temperature. They can,
however, be observed at low temperatures, such as the example of VB-to-acceptor
absorption in Boron-doped Si at low temperature, shown below. These absorption
resonances occur in the far infrared (here at least ~30 meV).
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ig. 6.35 Absorption coefficient of a boron-doped Si sample versus photon energy Av.
Jfter Burstein, et al., Proc. Photoconductivity Conference, New York: Wiley. 1956]

Figure 13.17

All the various possible donor and acceptor related absorption processes at low temperature
are shown below. However, at room temperature, the main optical consequence of donors
or acceptors is free-carrier absorption.
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Fig. 6.34 Various absorption processes involving impurities (see text).
Figure 13.18

Free carrier absorption

Free carrier absorption results from the excitation of a free carrier into an available state
higher in its respective band (e.g. electrons higher into the CB). As a result, free carrier
absorption is quite different for electrons and for holes, mainly due to the presence of
multiple valence bands. Free electrons located at k=0 in a single parabolic conduction band
can reach higher energy states if their momentum is increased. This means that in n-type
semiconductors, conduction band electrons may only be excited by the simultaneous
absorption of a photon and absorption or emission of a phonon, in order to conserve
momentum. By contrast, p-type semiconductors can have direct (i.e. no phonon needed)

146



transitions between the heavy and light hole bands (see the FHA process sketched earlier
in this chapter). This causes the holes to produce much stronger free carrier absorption
than conduction electrons. The conduction electron absorption process may be described
by the Drude model. For semiconductors, the free electron density is often small
(~10'*/cm? or about 10® smaller than in a metal) so that the plasma frequency is small.
(about 10* lower than a metal). Recall that, for frequencies well above the plasma
frequency, the Drude model gives

2 2 2
g'(a))~1—& 8"(a))~&_a)pl" 13.34
r ~ a)z) r ~a)3z-_ a)3 ) ( . )

so that the absorption coefficient is hence given by,

o,T T2

A (13.35)
cw? c/li

a(w) = %e"(a)) =

Hence we see a A2 dependence for free carrier absorption due to electrons. This can be
seen in the broad-spectrum plot of absorption for a typical semiconductor shown earlier.
Note that the formulas above do not take into account the susceptibility of the host material,
which is not negligible. Assuming that the host semiconductor at frequencies well below
the band gap has a dielectric constant €., the real part of the dielectric function of the doped
semiconductor becomes (see “Weak absorption approximation” in Appendix H)

a)z
e (wy~e, ——=, (13.36)
(0]

while the imaginary part remains the same. This leads to a similar expression for a but
scaled by the refractive index of the host ny=\e.., giving
2
of T2

1)
a(w)z—e"(w) = = —.
n,c neco”  me A,

(13.37)

The form of the free-hole absorption in p-type semiconductors is less well defined, as it
depends in the band structure as well as the hole density. In semiconductors with equal
numbers of electrons and holes, the free hole absorption dominates.
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Semiconductors of reduced dimension
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Figure 8.1. Schematies of (a) o single quantum well and (b) a sultiple
quantum well.

Figure 13.19

Semiconductors can now be artificially structured on nanometer scales. Quantum wells
are layered semiconductor structures with alternate layers of materials with different
energy gaps. The layers can be so thin as to confine the motion of the electrons
perpendicular to the layers so that only certain quantized energy states are allowed. Motion
in the other 2 dimensions is still like for a bulk semiconductor. However, the density of
states is changed. It is left as an exercise to calculate this, but the result is that the density
of states becomes step-like.

AE

AlGaks T

AlGaAs
GoAs

(a) (&)

Figure 8.2. Band structure in real space for (a) a bulk GaAs and (b) a
gingle quantum well of GaAs sandwiched between two AlGaAs barriers.

Figure 13.20
Because the energies associated with motion perpendicular to the wells are quantized, for

each of these quantized energy states, there is a whole band of energies associated with
motion in the other two dimensions. These are referred to as “sub-bands”
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As a result, the density of states, and hence the absorption spectrum, takes on the shape of
a staircase, with n steps of energy oc n?, as shown below.
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Figure 13.22

A density of states of this type gives very strong enhancement of the absorption and
emission of light at the very lowest photon energies. This can lead to very low-threshold
semiconductor laser operation. Reducing the dimensionality further can further enhance
these effects. For example, “quantum wires”, which allow only 1-D motion of electrons
gives a density of states proportional to E2, Meanwhile, “quantum dots” confine motion
in all dimensions, so that the semiconductor nanoparticles are rather like large atoms, with
a density of states that looks like a series of narrow lines (i.e. Dirac delta functions).
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Chapter 14 — From dipole radiation to refractive index

In several of the model descriptions of refractive index that were discussed in previous
chapters, we treated matter as an array of atoms that are polarized by an EM wave. These
induced dipoles in turn radiate a field that interferes with the incident field so as to produce
refraction (phase shifting of the incident wave) and perhaps absorption (attenuation of the
incident wave.) In Chapter 1 this was discussed qualitatively. In the present chapter we will
examine the radiated field from an oscillating dipole in more detail, and look how the
addition of dipole radiation from multiple dipoles gives rise to a macroscopic refractive
index. A more extensive description of these arguments is given in Wooten, Chapter 2.

Mathematical description of dipole radiation

To analytically describe how a large collection of driven oscillating dipoles adds up to a
refractive index, we first need to mathematically describe dipole radiation of an isolated
oscillating dipole. We will describe our point dipole as an oscillating current localized at a
point in space (i.e. a current density described by a delta function in space), and then apply
Maxwell’s equations to derive the magnetic and electric field components around the
dipole. To facilitate our analysis, we will make use of the vector potential, A.

The vector potential

There is a general vector theorem that states for a vector field V, we always have

V. (VX 17)2 0. From Maxwell’s equations we know that V- B=0 which implies that if we
construct a vector potential, A, such that

B=VxA, (14.1)

then we automatically satisfy V-B=0. Since in this approach B is derived from the
rotation of A, one can actually define A in different ways, as long as the rotation of A is
not affected. We use the form of A known as the “Coulomb gauge” or “transverse gauge”

where V- A4=0. In the following we will derive a wave equation for A which will we
expressed in terms of current density. From Maxwell’s equations we have

VxE:—Z—l: - VXE:—dVatLA) (14.2)

Taking the time derivative on each side, we obtain an expression for dE/dt:

- - ~ -
an—E=Vx—a;4 = 8_E=_6124
ot ot ot ot

(14.3)

where we have used that E and A are divergence-free (‘if the rotations are equal, the terms
could still have different divergence, however V-E=0 in the absence of free charge and
V-A=0 in the Lorentz Gauge’). Substituting the expression for dE/dt into

VxB =+ e, % (14.4)
t
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and applying
VxB=VxVxA=V(V-A)-V’Ad=-V"4 (14.5)
we find the following wave equation for A in the Coulomb gauge is
o=

e ——— =
ot’

V24 - u, —u,J | - (14.6)

Here we have assumed that we will be looking at transverse wave, implying that only the

component of J normal to the direction of propagation (/| ) is relevant. This equation has
a general solution:

- 1 J, - Ehady
A(F,0) = ] G

4r €,

, (14.7)

showing that the appearance of a finite vector potential at point r is due to the current at a
point r’ at an earlier time, which satisfies causality. This expression can be used to find the
dipole radiation field.

We assume a “point dipole”, placed at the origin:

N

. P[0

Figure 14.6

The time dependence is chosen to be harmonic, and since this is a “point dipole” placed at
the origin, the description of the dipole includes a delta function around r=0:

P70 = pycos@)3(r)p, (14.8)
Associated with this dipole is a current density at r=0:
J = %—f = —op, sin(@t)S5(F) p,, (14.9)

The component of the current that generates transverse components of A is given by
J | = —ap,sin(@t)3(F){p, |, (14.10)

Where ( ]30) | is the component of the unit vector that is perpendicular to r:
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Figure 14.7

It follows that
(o), ==x(7xpy), (14.11)

which has the magnitude of cos(0) (note: 0 is defined relative to the horizontal in the
sketch). A polar plot of this angular dependence of the magnitude of A is sketched below:

Py r

)

NN

Figure 14.8

Now we can substitute for J, in our solution for A to get

PSP (1
A1) = :;(;XCIZO)a)pO — [“]I(% ) (14.12)
0

Based on this solution we can now extract E according to

Vx4 . 04
( ) o (=2 (14.13)
ot ot

where again we used the Lorentz Gauge. This results in the following description of the
radiated electric field from the induced dipole:

VxE=—

8_;4_ —fx(fxfao)wzp cos|a)(t—@)|

E=—2"=
ot dre,c’ ‘ |17|

(14.14)
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We will be calculating the radiated power, which means finding the Poynting vector, which
in turn requires us to find the magnetic field. In isotropic media we have the following
relation between VxE and B:

VxE=-B = ikxE=ioB
(14.15)
. kxE
- B: X =
W

rxE

a |-

where in the last step we used the fact that r=k for a point dipole placed at the origin.
The direction of B is now related to the previously obtained direction of E according to

Px[=Fx(Fx p, )| =% p,. (14.16)

This gives us the following description of the magnetic flux resulting from a harmonic
point dipole placed at the origin:

5. Kpy coslolt—2)] (7Fx p,).

(14.17)
dre,c r

The expressions for E and B now allow us to calculate the Poynting vector and the radiated
power emitted by the dipole.

Effect of re-radiated field from induced dipoles

We are interested in the case where a plane wave is incident on a polarizable atom or
molecule. This induces an oscillating dipole which radiates a field that interferes with the
incident field, as shown below.

Figure 14.9

From the Lorentz model we have determined the magnitude of the induced dipole to be
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2 A
e Do E;
=py=— 14.18
H= ma, - —ilw (14.19)

Note that this description leaves open the possibility of an anisotropic polarizability, which
is relevant in the description of molecules. The complete radiation pattern that develops
due to the induced dipole is caused by the sum of the incident field, E;, and the field re-
radiated by the dipole (the scattered field), Es. Hence the total Poynting vector is

§=(EI+ES)><L(]§,+I§S)
U

0

:%[(EIXBI)+(EIXES+ESXEI)+(ESXES):| (14.19)
(U
= S mcident T S absorbed + gscuttered

The last step can be understood by requiring energy conservation. Energy conservation
requires that the integral of the Poynting vector across a spherical surface around the dipole
should produce a total emitted power of zero. The first term E;xB; clearly represents the
power in the incident plane wave, which integrates to zero. The final term clearly represents
the total power radiated by the dipole. For energy conservation to be satisfied, the cross
terms must add up to a negative quantity if there is finite scattered power. This suggests
that finite scattering is accompanied by a finite loss term representing absorption.

Scattered Power

Sscatt = _ES ><ES s Where, (1420)
0
- k2
Ei=——— {%po exp[i(kr - a)t)]+ c.c.} [f X (f X Do )] (14.21)
dre,r
and
2
B, = Kby L py explillr — oot )|+ c.c.} (7x p,). (14.22)
4r €, cr

Since [f X (f X Do )]X (f X ZA’o) =7cos 0 , then the time average of the Poynting vector for
the scattered light is

. k'dp,[ )
T B a2
, .
= o' |p0| cos’ O 7.

24ryce, 1

The scattered time-averaged power is then given by integrating over all directions of
propagation:
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P = 2J{[d¢j r* sin 9d9[f-<§mn>t]
0 0
4

(14.24)
= a’_| [
127 ¢, ¢’ ’
and since,
2 _ i (f’o 'Ef)z
[pof =— e (14.25)
then,
4 4 AT
scatt @ ¢ (po EI)Z (1426)

= 32 >
27 e, c” m (a)(f—a)z) +Iw’

Hence, in the limit of ® << wy, the scattered power is proportional to w* or A — this is
known as Rayleigh scattering.

We can also define a molecular scattering cross section, Cscan(®) -

Pcatt = Gscatt(a))<Sl>t (1427)

N

8OC|E1 ?, then

1
2

and since <S1>t =

4 4 ~ E
= Gscatt(a)) ve 2 (po I)Z (1428)

6n e, c'm | D(a))‘2

2 > .
where D(a)):a)o —@ —il'@. Here, we have not done an average over molecular

orientations.

Absorbed Power

Since the scattered field is weak compared to the incident field, we can treat the scattered
intensity as being negligible compared to the incident. Hence the transmitted irradiance is
primarily affected by Sans, which is the term that describes interference between the incident
and scattered fields. We will not take the time to go through the math here, only look at the
result, as sketched in the figure below. This shows that the time average of Sabs, i.€. <Sabs™t,
oscillates rapidly with angle 0 around the dipole for most angles, but behind the dipole
<Sas>t varies slowly and is negative, as shown in the polar plot below. (From Hopf &
Stegeman, chapter 4)
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fa) (1.1

Figure 4.2. Interference pattern cbserved around a sphere surrounding the
dipole. The circle intersects the graph of the flux at points where the flux
is zero. Fluxes inside the circle are negative, outside the circle are
positive. (a) Detailed structure of the interference. (b) Result of average
over a small area.

Figure 14.10

Hence, the effect of the dipole is to impress a small “shadow” on the transmitted field
behind it. If we integrate the outward-flowing component of <S,,s> over all angles, the
result is the total absorbed power, Pas, i.e.

P

abs

= <§b .;ﬁ>tdQ, (14.29)

where the integral is over all solid angle Q. This yields,

P, = —%(;30 £, )m{y’ (@)E, | (14.30)
Where,
— i (ﬁo E[)E[(a)) _ i (ﬁo EI)EI(w)
Hlw) = m (a)o2 -’ —iFa)) T m D(a)) ' (1431)
Hence,
. B ez!fao EA" 2 1
Im{ 1/’ (w)E, | = . E,| Im{D*(w)}
)y —ro 3y
m e

Now we may define a molecular absorption cross-section ouss(®), that relates the absorbed
power to the incident irradiance, by

P, =0,(S),. (14.33)
Hence
G (S,) = —%(ﬁo E, )Im{,u*(a))E, 3 (14.34)
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S, =tce,|E [, (14.35)
we obtain
o/ = e To
T s (@) = —<(po E,)Z> — (14.36)
¢ 0 €y M |D(a))|

where the averaging is now over all angles between the dipole coordinates and the applied
field. For a medium containing randomly oriented molecules, (i.e. isotropic), we have

- 1
already seen that <(p0 EI)Z> 25.
0
Since Paps is an absorbed power per molecule, we can find the net absorbed power per unit

volume as N Pays = NoansSi. But the power absorbed per unit volume for a plane wave is
just —dSy/dz. Hence

dz S (14.37)
= S,(2)=S5,(0)e* =S,(0)e""

Hence, the absorption coefficient is given by
a(w)=0o, (w)N. (14.38)

This result makes sense in terms of our result for Gaws() above, as in the weak susceptibility
approximation, ol(®)=(c/®)y”(®).

Complex refractive index for a sheet of induced dipoles

Unlike absorption, we cannot calculate the refractive index from the field of a single dipole.
We must look at the field due to an ensemble of induced dipoles. To calculate the refractive
index (real and imaginary), we look at the field produced by a sheet of dipoles all induced
by the same incident plane wave.

=T/
V7

el

47—t f\f<

\\/\

L

Figure 4,3. Illustration of sheet of dipoles of density ¥, thickness dz and
area A, where we are ultimately interested in the limit A » =,

Figure 14.11
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Summing over the N-A-dz dipoles in the sheet, we find (see Hopf & Stegeman) that the net
radiated field is also a plane wave, described some distance behind the sheet by:

—iw
ER(t) = )

Ndz-1(2x(2x p,)) €7 +ce. (14.39)
g C

and since B=1ZxE,

iw

E’R (= Ndz- %<2 X Do > p ¢ _ce (14.40)

2
2¢,c

where the averaging is over molecular orientations.

Note that the factor i in both field terms means that the radiated field, Er is 90° out of phase
with the oscillation phase of the dipole. This implies that for a real po and a cosinusoidal
incident field, the reradiated field is sinusoidal. Hence in the absence of loss, the reradiated
field is 90° out of phase with the applied field. For a very weak reradiated field (always the
case), this translates to a phase shift on the incident field, rather than an amplitude change.

E;
————————— 1— _ - ER
- - _V‘
Resultant _ -~ Lossless oscillator — below resonance

field -~

Figure 14.12

For the Lorentz oscillator model given above, we find

B E, ik dz<(’3° 'E)z> _p, ik dz<(f’0 E)z> (14.41)
4

2¢e,m D(w) 2 D(w)

where the averaging is over the molecular orientations.
Now the total change AE in field amplitude E(z) after a propagation distance of Az is,

AE = E(Az) - E(0) = E, (Az) + E o (Az) — E, (0)

. ko [(p - E Y
=E, " + Ei— ”<(p° Ef) > Az - E,

2 D(w)
2 [~ & (14.42)
zE][(l‘f‘ikoAZ)"‘ikowp <(p0E1)2> AZ—IJ
2 D(w) ,

dz 2\ D [

The second step makes use of exp(x) =1+x for small real x.
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We also know
dE,

z

=

_iknE,. (14.43)

Comparing this with equation 14.42 gives the following expression for refractive index:

n =(n+ik)=1+lw2<M> : (14.44)

2 "\ D(w)

And therefore

e.=n ;1+a);< IE(E) > ) (14.45)
w
9

which is the Lorentz oscillator model result, including orientational averaging.

Clearly, then, the phase of the induced dipoles, and hence the phase of the re-radiated field,
dictates the optical properties of the material. On resonance, the oscillators are 7/2 out of
phase with the driving field. The re-radiated field is shifted by yet another m/2 upon
propagation, so that Er is  out of phase with E.

E;
P - - v ~ -~ ~ E
Resultant _ -~ R
field _ -~ Lossy oscillator — at
resonance

Figure 14.13

Clearly, we may extend these arguments to gain. If the phase of the oscillator is -n/2, then
the radiated field will add to E.
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Appendix A — Vector relations and theorems

Unit vectors (Cartesian)
£=(1,00), $=(010), 2=(00,1)
Vector
F = (F,E,F)=FEX+EJ+FEz?

Vector field: if a field E has a direction at every point in space, is called a vector field,
which is written as E (x,vy,2z) or E (1) where 7 = (x,y,z). A time depent vector field is
written as E (7, t).

Dot product
A-B=AB,+AB,+A4,B,

Cross product

x
x‘f X E = (AyBZ - AszrAsz - AxBZ'AxBy - AyBx) = Ax
By

\53 ‘3‘ <2
W ND> N>

‘Del’ operator

o[0 00
ox Oy Oz

Divergence
- — 0
V-F= —F+—F+ F =1lim— F-dS
ox oz Ar=0 AV
Curl
X y z
vxﬁzi 9 g—nhm— F-dt
ox Oy oz AS—o Ag
_.X ﬁ‘y _.Z

with 7 the unit vector normal to surface S

For a scalar field V(x,y,z), the gradient is a vector field defined as

Ty = 8V ov or
ﬁy oz

The operator ‘del squared’ is called the Laplacian. When acting on a scalar field V(x,y,z)
the result is given by
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oV oV oV
+ +
o’ oyt o

VIV =V-(VV)=

When operating on a vector field E(X, Vs Z), del squared is called the vector Laplacian,
given by

§2E’: azEx , 82Ey , azE;
FYRPYRPY

For any vector field E(X, V,2):
Vx(VxE)=—VE+V(V-E)
V-(VxE)=0

For conservative fields only:

I V.-Fdv = §F -ds (Divergence Theorem or Gauss’ theorem)

IV x F-dS = §ﬁ -dl  (Stokes’ Theorem)

Vector fields

The electric field E has a direction at every point in space. This is written as E (x,y,2) or
E(¥) where # = (x,, ).

Divergence
The divergence of a vector field F (x,y,z) is given by the following relation:

dF, OF, OF 1 ([~ -
S A | F-dS (2.32)

v.op=2 My R L

dx dy 0z Av-0AV
where the double integral represents an integration across a closed surface, with enclosed
volume AV. The term dS represents an infinitesimally small vector locally normal to the
surface with a magnitude corresponding to a differential area (infinitesimally small area)

on the surface. We have also used the “differential vector’ nabla V= (%,%,%).
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Figure 2.1. Schematic of a spherical volume with surface S and a differential surface element
vector dS locally normal to the surface.

As you can see the divergence of a vector field is a number (i.e. a scalar) that represents
the degree to which there is a net change in the vector length as we move along its direction.
In a way it describes the ‘outwardness’ of the vector field.

Gauss’ Theorem (or Divergence Theorem)

Electric fields and magnetic fields inside homogenous media represent a special class of
vector fields known as conservative fields.! Broadly speaking this means that electric fields
cannot suddenly appear out of nowhere or discontinuously change direction inside a
continuous medium. For such fields, any net divergence within a volume V must result in
fields pointing out of the surface. This is captured by Gauss’ theorem:

ﬁfﬁ-ﬁdv=#ﬁ-d§ (2.33)

where dV represents an infinitesimal volume dV=dxxdyxdz.

Curl

VxF =nlim—¢F-d/ (2.34)
71 unit normal to surface
Stoke’s Theorem

j%ﬁdﬁ:jlﬁ-di (2.35)

These and other vector relations are summarized in appendix C.

i see e.g. http://mathworld.wolfram.com/ConservativeField.html
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Figure 2.2
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Appendix B — Maxwell’s Equations

James Clerk Maxwell deduced a set of equations that describe the relation between charges,
electric fields, and magnetic fields. Charge is described as smoothly distributed with charge
density p (C/m?), which can contain contributions from free charge and polarization charge.

The complete Maxwell Equations are as follows:

v-E=2
€o
V-B=0
. B
XE=——
ot

=

" OE _ 9P
VXB=60[,{0§+IJO _]f+ VXM+%

The latter two relations are often expressed in terms of magnetic field intensity H and
displacement D, taking into account magnetization M, using the following relations.

D=¢k+P

B = uo( + )

Gauss’ law for B
No magnetic monopoles: following Gauss’ Law

V-BE=0 (2.36)
ie.

o _ma neticchar e_
§ B(F)-ds =25 £=0=[V 5 (2.37)
Hy v

Ampere’s Law

For magnetic fields, the flux density, B, is related to the magnetic field intensity, H and the
induced magnetization, M, by

B = (i + 37 (2.38)

o oD

VxH =Tl 2.39
free dt ( )
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o

=g, E+P
4 Maxwell equations + .
= ,uo( +M )

(Henceforth we will use J in place of Jfee.)

(oo T}

Current Sources

oD

VxH=J+— (2.40)
dt
vl B w7+ % (e E+ P) (2.41)
Hy dt
I - - oP
VXxB=puyJ+ uVxm +30y0—t+uoz
e t =
free charge magnetism bound or polarization
current density current density current density
vacuum displacement
current density
= OE

=u,J, + U,g,— 2.42

Mo o T Ho&y d (2:42)

or
= = 1 oE
VxB= IUO']tot + C—ZE (243)
where

- - & - 0P
J'G’:J+VXM+% (2.44)
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Appendix C — Empirical descriptions of refractive index

Sellmeier equations

Sellmeier equations are essentially empirical fits to the actual refractive index of a material,
using the result for ' for Lorentz oscillators as basic functions. Hence, Sellmeier equations
are of the form

a)2

2 )21
n*(w)=1+) — .
j @y —@
These equations are very useful ways of providing data on the refractive index of materials
vs. wavelength, without the need for extensive tables. They are usually valid only in high
transparency spectral regions, far from resonances, where y is real. Often, but not always,
Sellmeier equation for a material may contain a pole (i.e. a resonance) at low frequency

(0 << ) and one at very high frequency (wo>> ®). Hence one could write

2 2 2

@, o’ ®
n(o)=1+—L2+> —2 2

2 2’
000 T a)O_i—a) w

2 2 . .
where, 1+ w,, / @y, is more commonly written as €.

In practice, these equations are usually expressed in terms of wavelength:
A2 b.A
2 )z 2 J 2
n(w)=1+A4+) —4——-dl =a+ ) —+—-d1°,
(@) ;%i—[z ;ﬂz—cj

so that coefficients a, bj, ¢;, and d may completely describe the refractive index vs.
wavelength for a material. There are usually only one or two values of j (i.e. only one or
two resonances) in the Sellmeier equation for a given material. This may depend on the
material and on the level of accuracy required. To get an idea of the wide variety of
Sellmeier equations, some Sellmeier equations are given in the following table from the
OSA handbook of Optics:
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Material Dispersion formula (wavelength, A, in pm)

Range (um)

Ref.

0474

- AgsASSs L 0.00192
R VAV

L=7.4834

UA_

~0.09

2 _ 2
sAgBr n _ 0 099391
e z 0.452505 + 32— 570537

2 06250812 0.9461465A° 430078512

"6346+ —-0.0011A%

—0.00150A2

2 1=
m = T 01039054) T AT - (0.2438691)2 T A7 - (70.85723)7

21686A2 +21753)\2
—0.1003 * A2-950

15274)«2 2.1699A2
~0.1310 © A2-950

22037/\' " 1.8377A%
—0.1879 * A%~ 1600

1 3970A% " 1.92822%
-0.2845 * A* - 1600

n, =2.200@0.659 pm
n,=2115@1.318 pm

6.0840A2 + 1.900A2
- (0.2822)* " A% - (27.62)*

1.3786A2 3861).2
- (0.1715)2 - (15.03)?

2 2
n=3079 + OB, ,4'1_??",.~.,

1.4313493)2 0.65054713A° 5.3414021A2
A% = (0.0726631)% * A% — (0.1193242)% * A* — (18.028251)°

2y 1.5039759A% 0.55069141A° 6.5927379A7
A2 —(0.0740288)% " A2 - (0.1216529)7 * A% — (20.072248)*

2.1375)% 4.582\?
A2 —0.10256% ' A% - 18.868*
0.0184
n? =2.7405 + 00079
0.0128
A2 -0.0156

0.643356A2 + 0.506762A2
A2 — (0.057789)> * A% — (0.10968)2

4.187A
A2 (0.223)

n, —36280+

n; -40177+

=4.6453 + 5

=3, 2912+

n, =2.184;
n, =2.104;

n —20792+

31399+

n-1=

nt—1=
- 0.0155A2

n?=23730 + ~0.0044A2

3.8261A2
A% = (46.3864)

nt-1=

nt-1=

o 004A°
TATZ(0.211)2

2y o 1922741 1 242092
T TR (0.07908) T A7 - (0.7131)?
' 603007 1.67330M°

X (10.4797)

SRR
e~ 1= = 0.085%0)7

168

(.’IO'\
O
/\

<

0.49-0.67
0.54-21.0

0.49-12

0.73-13.5

0.56-2.2

0.22-5.0

0.2-5.5

0.4-2.3

0.22-1.06

0.27-10.3

0.4-0.7

0.44-7.0

168

169

110

170

170

171

172

173

174

175

104

176

177

178



For fused silica, a good fit can be obtained by using a 3-pole Sellmeier equation, with poles
at approximately 9.9 um, 116 nm and 68 nm. The contributions of the individual poles can
be seen below:

0.6961663 ~X2 0.4079426 -kz 0.8774794 ~X2

f1(1) := (1) = 3(2) =
2 2 2 2 2 2
A — 0.0684043 A —0.1162414 A —9.896161
Reference: Handbook of Optics (OSA)

3 | | |
- —

- o)
1 j -
0O 01 OI 1 I1 IIO 100

100 ' ’

n(2) 145

1.4

Schott glass description (power series)

nZ=ap+ al+ A2+ alt + ad®+ ash s
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Hertzberger description (mixed power series and Sellmeier)

B N C
P72 Ay

n’ = A+

Abbe number

The Abbe number, vy, is a very commonly used single-number measure of the dispersion
of glasses. It is defined by

n, —1

v, = ,
n,—n,

where ngq is the refractive index at A = 587.6 nm (the sodium "d"-line), and nr and n. are the
refractive indices at A = 486.1 nm and 656.3 nm, respectively. Typical values are in the
range 20 ~ 60. A low Abbe number indicates high chromatic dispersion. Some examples
are given in the following table.

Material Refractive index Abbe number
Crown Glass 1.52 58
Polycarbonate 1.59 31
BK-7 1.52 62
CaF, 1.433 94
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Appendix D — Fourier transforms

Time dependent fields can be represented as a sum of many oscillatory components, each
with their individual angular frequency w. In this text, we use the following convention

E(t) = J.OOE(a))e‘i“’ dw

If the time dependent signal E(t) is known, the Fourier amplitudes E(®) can be determined
using

1 (® )
E(w) = Ef E(t)etdt

Here E(®) is the Fourier transform of E(t), which is also written as E(w) = #[E(t)]. In this
text, the only exception to the notation shown above is the susceptibility, which we define
as

o)

2(@) = f x(Oetdt

and conversely

1 r® ,
X@® =5 | x@e e
2w )_o
It can be shown that

FPOQM]=C FP(H)] ® FQO]

Where the symbol ® stands for the convolution operation. The prefactor C depends on the
choice of the form of the Fourier transform. Under our definition of the Fourier transform,
we have C=2mn. The convolution operation is defined as

(A®B)(w) = fooA(w)B(a) —w)dw'

Important convolution relations are A®B = B®A, and A(®)®d(w)= A(w). Here 5(m)
represents the Dirac delta function, which is zero everywhere except when its argument is
zero, and which is normalized according to

f_o:o(ﬁ(a))dw =1
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Appendix E — Optical response: formulas and definitions

Permittivity (linear)
€(w) = €o€r () = €o(1 + xe(w))
with &r the complex dielectric function, and 7. the complex electric susceptibility.
Permeability (linear)
w(w) = popy(w) = uo(1 + xm(w))
with i the relative permeability, and yn the magnetic susceptibility.

Wave vector (scalar notation)

k_21r
2

Light dispersion relation in isotropic materials
W2
k? = pew? = n(—)
c

Complex dielectric function, link to complex index in absence of magnetic effects
& (0) = er(w) + ie) () = n(w)?
Complex refractive index, link to dielectric function in absence of magnetic effects
(@) = n(w) + ik(w) = & (W)
Manual conversion between complex dielectric function and refractive index:
n?=m+ix)> =n?—k?—-2nki = ¢ = ¢ +ig
€' =x" =2nk

e =1+ =n?—-k?

j— 1 !
n= |Z(el +e)
j— 1 !
K= E(lerl - Er)

12 12

= X
2n 2n

Phase velocity of an electromagnetic wave in isotropic medium:

w1
[ Ue

Phase velocity of an electromagnetic wave in vacuum:

1

Ho€o

Cc =
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Refractive index in isotropic materials

c 1
n _——=
Up Hr€Er
Absorption coefficient
)
a=2Kk—
c
Group velocity in isotropic materials:
(@)
v, = |=——
9 \dw
Plasma frequency for free electron gas:
2
, Ne
wp =
Mme€p

Poynting vector: instantaneous flow of optical energy per unit area.
1 - —

S=—ExB
Ho

Irradiance: magnitude of the time averaged flow of optical energy per unit area

o 1
Iw/m?) = [(S®)| = EnceoEg

where the last step assumes a plane wave with field amplitude Ey in an isotropic medium.
Electromagnetic energy density in vacuum:
1 1
u==-¢€E?+-—B?
2 2119

Energy dissipation per unit volume:

1
Swee |EP

Reflection coefficient under normal incidence from air on planar surface
(n—1)% + k2
GRS
Reflection coefficient from medium 1 to medium 2 under normal incidence
2 (npg—ny)? + (kp — 1y)?
(ng +ny)% + (k; + K1)?

N2—M
N2 +1M

R(w) =
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Appendix F — Springs, Masses, and Resonances

When discussing movement of bound masses (bound electrons, atoms in molecules, atoms
in solids) we encounter mechanical resonances. To help understand and memorize the
corresponding frequencies, this appendix shows all of them on one page.

/
One mass on fixed spring: %NWO w = E
A m
_ | 2K
Two equal masses on shared spring OO w = ™y
: | K
Two unequal masses on shared spring O w= |—
l U
One mass on two springs 2K

W/ ©= m
Y/, v/,

Unequal masses with shared springs on each side w =

=R
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Appendix G — Rules of thumb and orders of magnitude

Photon energy vs. wavelength

Wavelength vs. photon energy

1.24
Awm) = g vy

Energy vs. wavenumber

E(meV) = wavenumbers /8

Field strength vs. irradiance in medium with refractive index n

21 I
Emax(V/m) = nce =~ 27 n

Order of magnitude irradiance needed in vacuum for 1 V/nm (expect NLO response)

1z1015m=1pw
mz

m2

Irradiance order of magnitude for 1 V/nm, expressed in energy per area for a Ins pulse

L LU Y N V7

I~ = =
m2 mm? m2

Irradiance order of magnitude for 1 V/nm, expressed in energy per area for a 1ps pulse

1k Imj . 1nf

I = = =—= DS

-1

p -1
m? mm? um
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Appendix H — Approximations

When calculating the optical properties of dilute materials (gases) or doped host materials,
we need to consider changes to the real and imaginary susceptibility caused by the dopants.
To find the refractive index of the doped material, calculate the complete dielectric function
and use the relation = +/€,.. In some specific cases, we can use approximations that will
simplify the work.

Dilute medium approximation

In dilute media |n| = 1 and therefore |x| <<l . This allowsustouse V1 +x = 1 + %x :

1 1
= VIFO I ~ 1452 +5ix"

This gives

For dilute media we thus have a quick way of finding o, given by

w x'w
a=2kky=2k—=——
c c

Weak absorption approximation

In a medium with a complex index with a magnitude |n| >> 1, the dilute limit no longer
applies. In this case we cannot use k = "/2. Instead, we would have to use the exact relation
2nk =y’’. However, for weak absorption, we can derive an approximate relation for k and
Q.

To approximate a in this case, we split the term into a real prefactor and complex
contribution with length ~1. In the case of a host with real dielectric function & and a small
dopant susceptibility contribution y4 this can be done as follows:

n= /eh + Xg T ixg = en

For low absorption (small imaginary contribution to 1 and &), we can approximate 77 as

Xa _ixd
~ 1422424
n &h < Zsh 2£h>

For small dopant susceptibility we thus have

n= £h<1+%>z,/sh=nh

n n
Xd Xd

~

K=~ . |& —=~—""—
hZSh Znh
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The latter expression looks like the exact relation: 2nx = y’’, but note that in the
approximated form the denominator contains the index of the undoped material. This
highlights the fact that our approximation assumes that the host index is not significantly
affected by the dopants. This is NOT allowed if the dopant introduces strong absorption,
or if the host already has a significantly complex index.

Effect of dopants on reflection for weak absorption

In many real world applications, we consider transmission through 1mm or even 1cm thick
windows. In these cases, transmission < 1 can be due to either reflection losses or
absorption losses (or scattering, diffraction, not covered in this class). When we add
dopants to a non-absorbing, approximately non-dispersive material, we expect that the
transmission will change due to dopant induced absorption, as well as due to any changes
in the reflection coefficient. In many cases the reflection changes associated with dopants
will be minimal.

Example: if we consider a host with index n=2 (similar to the index of Si3N4), we find that
a 1mm thick undoped Si3N4 slab would transmit a fixed fraction of (1-R)?*~0.78 of the light.
Now let’s assume that we include dopants that add a susceptibility of 0.008 + 0.008i. This
would lead to a dielectric function

Edoped = €host T Xdopant = 4 +0.008 + 0.008i = 4 * (1 + 0.002 + 0.002i)
This gives a complex index that is approximately
Ngopea ~ 2+ 0.001 + 0.001:

This change in complex index will have only a small effect on the total reflection:

2 (gap = D* + Kgp
(nslab + 1)2 + Kszlab

Nsiab — Nair
Nsiab + Nair

Rundoped = = 011111

VS.

1.001% + 0.0012

R = =0.11126
doped ™ 3 0012 + 0.0012

We see that the single interface reflection coefficient changes by only 0.14%. Compare this
to the introduced absorption loss by this same dopant. After the 1mm slab we would have
a total transmission of (1-R)*> e** . Here oo = 2k ko which for A = 1 pum gives us o =
47x0.001/Tum = 12.6 /mm, giving T=(1-R)? e'*¢ = 2.7 x 10°. We find that the dopant
barely changes the reflection, but reduces the transmission almost to zero. We therefore
conclude that if a dopant allows appreciable (> ~1%) transmission through a thick (mm
cm) sample, we can safely assume that the dopant does not have a significant effect on the
magnitude of the refractive index and therefore the reflection coefficient.
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Appendix | — Thermal distribution functions

In many physical systems, the probability of certain states being populated (or ‘the chance
of certain configurations being present’) depends on the temperature. Temperature is a
measure of the kinetic energy in a system, which can take the form of movement of entire
molecules, vibrations of molecules and solids, and rotations of molecules.

Typically, states and configurations with high energy are unlikely to occur, unless the
temperature is very high. This effect can be expressed in terms of thermal distribution
functions f{E) that describe occupation (probability) of a state with energy E as a function
of temperature. Depending on the type of system, these distribution functions have a
different form. Below are commonly encountered distribution functions.

Boltzmann probability distribution

The probability distribution in systems of many classical particles (no quantum mechanical
effects) that are in thermal equilibrium follow Boltzmann statistics. The probability of a
particular particle having an energy E is proportional to a factor

f(E) < e—E/kBT

with kg the Boltzmann constant kg ~ 1.38x 10> J/K. This shows that it is most likely to
find a particle occupying a low energy state. We use this distribution in describing dipole
orientation in polar liquids (Debye model) and indirectly in describing inhomogeneous
broadening due to Doppler shift in gases with velocity distributions described by the related
Maxwell-Boltzmann velocity distribution.

Maxwell-Boltzmann velocity distribution

According to statistical mechanics of ideal gases, atoms (or molecules) in the gas phase
have an isotropic temperature-dependent velocity distribution. The probability of having a
velocity in the range {v, v+dv} depends on the kinetic energy ' mv? according to the
Boltzmann distribution, multiplied by a factor that considers the number of possible
directions for this velocity which adds a factor 4nv2, times a normalization constant. The
resulting formula is the Maxwell-Boltzmann distribution:
m 3/ ~Linv? jkr
v) = (—) Amp2e 2™V /KT
fup @) = (5=
Here fus(v)dv represents the fraction of atoms in a gas with a thermal velocity magnitude
between v and v+dv, with m the mass of the atom (or ion, or molecule), and k the

Boltzmann constant.

Bose-Einstein probability distribution

In systems where a quantum mechanical description is used, two distinct thermal
distributions are encountered. Quantum particles that are derived from forces are typically
Bosons, which in this book are encountered as photons (‘electromagnetic force particles’)
and phonons (‘mechanical forces particles’, related to molecular binding forces in solids).
While not discussed in detail in this text, more generally, Bosons are particles with integer
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spin. Bosons are special in the sense that a given Boson quantum state can in principle
contain an unlimited number of Bosons. For example, for photons in a cavity this means
that the fundamental optical mode can have an ‘unlimited’ number of photons and
unlimited field strength. This means the occupation function f(E) for Bosons can exceed 1,
and consequently the magnitude of the quantum mechanical expansion coefficient ‘a’ can
exceed 1 (see e.g. Miller, QM for scientists and engineers). The corresponding thermal
distribution function is of the form

1

fee(E) = SEJRT — 1
known as the Bose-Einstein distribution, where we have assumed that all energy is from
the particles themselves. If there are other sources of energy involved, the energy term is
replaced by E-u with p the chemical potential. Note that the exponential term can reach
any positive value from one to infinity, and consequently fgg can in principle range from
infinity to zero (when the exponential term goes to infinity). Note that at energies well
above kT this distribution function approaches the Boltzmann energy distribution.

Fermi-Dirac probability distribution

Particles that represent matter (electrons, protons, etc.) are usually Fermions.! Unlike
Bosons they have half-integer spin. These particles follow the Pauli exclusion principle,
which states that a (Fermionic) quantum state can only contain a single Fermion.
Consequently, the thermal distribution functions that describe Fermions cannot exceed a
value of 1. The corresponding distribution function is the Fermi-Dirac distribution:

1
fro(E) = SEEA/RT 11

where Er is known as the Fermi level, corresponding to the energy where the probability
of a state being occupied is f(Er)="2. Note that at energies many times kT above the Fermi
level this distribution function approaches the Boltzmann energy distribution.

10? T T T T T T T T T T T T 5 T

X T
Fermi-Dirac distribution Fermi-Dirac distributions with E.=0.5 eV
, Bose-Einstein distribution
10 Boltzmann distribution 3 — T=10K ]
——T=7rTK
10° ——T=293K

——T=1000K B

[T] =

f(E)
f(E)

10% 1 1 1 ! ! L 1 0.00 L L Xe By L
0 25 50 75 100 125 150 175 200 0.0 0.2 0.4 0.6 0.8 1.0 12

Energy (meV) Energy (eV)

Scaled examples of Fermi-Dirac, Bose-Einstein, and Boltzmann energy distribution (left), and
examples of the Fermi-Dirac distribution at four different temperatures.

i See https://en.wikipedia.org/wiki/Spin_(physics)
ii See https://en.wikipedia.org/wiki/Fermion
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Appendix J — Wavefunctions of the Hydrogen atom

The energy Eigensolutions of an electron in a Coulomb like binding potential are written
as

lpn,l,m (T, 0, ¢) = Rn,l(r) Ylm (97 d’)
The spherical Harmonics are given by the following relations:

Y6, ¢) = Cim P["(cos(6))e™?

oo 20+ 1(1—m)!
bm = A (L +m)!

With normalization constant

And
dm
PI"(2) = (~D™(1 = 22)" - P(2)
Where
!
P(z) = [(z2 — 1DY?

2Urdz!

Are Legendre polynomials.

The radial wavefunction depends only on n and /, and is given by

n—-Il-1
Rni(p) = p' z axpker/?
k=0
With
_ 2
p= na, 4
And
k+l+1-—n

G T e Dk +20+2)
where ay is the Bohr radius, given by

4me h®
ag =

mee?

With a numerical value of a, ~ 0.529 A.
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Appendix K — OSE5312 Quantum Mechanics topics

The full table of contents of Miller’s quantum book (1* edition) is shown below, showing
topics that are covered in CREOL course OSE5312. Topics that are skipped or only briefly
discussed in are shown in light gray.

Chapter 1 Introduction

1.1 Quantum mechanics and real life

1.2 Quantum mechanics as an intellectual achievement
1.3 Using quantum mechanics

Chapter 2 Waves and quantum mechanics — Schrodinger’s equation
2.1 Rationalization of Schrdédinger’s equation
2.2 Probability densities

2.4 Linearity of quantum mechanics: multiplying by a constant

2.5 Normalization of the wavefunction

2.6 Particle in an infinitely deep potential well (“particle in a box”)
2.7 Properties of sets of Eigenfunctions

2.8 Particles and barriers of finite heights

2.9 Particle in a finite potential well

2.10 Harmonic oscillator

Chapter 3 The time-dependent Schrodinger equation

3.1 Rationalization of the time-dependent Schrodinger equation
3.2 Relation to the time-independent Schrodinger equation

3.3 Solutions of the time-dependent Schrodinger equation

3.4 Linearity of quantum mechanics: linear superposition

3.5 Time dependence and expansion in the energy eigenstates
3.6 Time evolution of infinite potential well

3.8 Quantum mechanical measurement and expectation values
3.9 The Hamiltonian

3.10 Operators and expectation values

3.11 Time evolution and the Hamiltonian operator

3.12 Momentum and position operators

3.13 Uncertainty principle

3.15 Quantum mechanics and Schrédinger’s equation
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Chapter 7 Time-dependent perturbation theory
7.1 Time-dependent perturbations

7.2 Simple oscillating perturbations

7.3 Refractive index

Chapter 8 Quantum mechanics in crystalline materials
8.1 Crystals

8.2 One electron approximation

8.3 Bloch theorem

8.4 Density of states in k-space

8.5 Band structure

8.6 Effective mass theory

8.7 Density of states in energy

8.10 Use of Fermi’s Golden Rule

Chapter 9 Angular momentum

9.3 Visualization of spherical harmonic functions
9.4 Comments on notation
Chapter 10 The hydrogen atom

10.2 Hamiltonian for the hydrogen atom problem
10.3 Coordinates for the hydrogen atom problem

10.5 Solutions of the hydrogen atom problem

186



Chapter 11 Methods for one-dimensional problems
11.1 Tunneling probabilities

11.2 Transfer matrix

11.3 Penetration factor for slowly varying barriers
11.4 Electron emission with a potential barrier

Chapter 12 Spin

12.1 Angular momentum and magnetic moments

12.2 State vectors for spin angular momentum

12.3 Operators for spin angular momentum

12.4 The Bloch sphere

12.5 Direct product spaces and wavefunctions with spin
12.6 Pauli equation

12.7 Where does spin come from?

Chapter 13 Identical particles

13.1 Scattering of identical particles

13.2 Pauli exclusion principle

13.3 States, single-particle states, and modes

13.4 Exchange energy

13.5 Extension to more than two identical particles
13.6 Multiple particle basis functions

13.7 Thermal distribution functions

13.8 Important extreme examples of states of multiple identical particles
13.9 Quantum mechanical particles reconsidered
13.10 Distinguishable and indistinguishable particles

Chapter 14 The density matrix

14.1 Pure and mixed states

14.2 Density operator

14.3 Density matrix and ensemble average values

14.4 Time-evolution of the density matrix

14.5 Interaction of light with a two-level “atomic” system
14.6 Density matrix and perturbation theory

Chapter 15 Harmonic oscillators and photons

15.1 Harmonic oscillator and raising and lowering operators

15.2 Hamilton’s equations and generalized position and momentum

15.3 Quantization of electromagnetic fields

15.4 Nature of the quantum mechanical states of an electromagnetic mode
15.5 Field operators

15.6 Quantum mechanical states of an electromagnetic field mode

15.7 Generalization to sets of modes

15.8 Vibrational modes

Chapter 16 Fermion operators

16.1 Postulation of fermion annihilation and creation operators
16.2 Wavefunction operator

16.3 Fermion Hamiltonians
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Background mathematics
A.1 Geometrical vectors
A.2 Exponential and logarithm notation
A.3 Trigonometric notation
A.4 Complex numbers

A.5 Differential calculus
A.6 Differential equations
A.7 Summation notation
A.8 Integral calculus

A.9 Matrices

A.10 Product notation

A.11 Factorial

Background physics

B.1 Elementary classical mechanics
B.2 Electrostatics

B.3 Frequency units

B.4 Waves and diffraction

Vector calculus

C.1 Vector calculus operators
C.2 Spherical polar coordinates
C.3 Cylindrical coordinates
C.4 Vector calculus identities

Maxwell’s equations and electromagnetism
D.1 Polarization of a material

D.2 Maxwell’s equations

D.3 Maxwell’s equations in free space

D.4 Electromagnetic wave equation in free space
D.5 Electromagnetic plane waves

D.6 Polarization of a wave
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D.7 Energy density
D.8 Energy flow
D.9 Modes

Perturbing Hamiltonian for optical absorption

E.1 Justification of the classical Hamiltonian
E.2 Quantum mechanical Hamiltonian

Some useful mathematical formulae

G.1 Elementary mathematical expressions

G.2 Formulae for sines, cosines, and exponentials
G.3 Special functions

Appendix H Greek alphabet

Appendix I Fundamental constants
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Appendix L — Recognizing material types

The topics covered in this text as well as in additional study materials for CREOL course
OSES5312 enable you to recognize materials based on their optical response, and
conversely, allow you to predict trends in optical properties given material type or
composition. Briefly: refractive index is due to light-induced charge motion = optical
properties can be understood by knowing how many charges are involved, and how easily
they can be moved by an electric field.

Dilute gases

- Index near one

-y near zero

- Mostly transparent

- Narrow absorption lines

- If gas molecules are polar or have dipole active vibrations — groups of sharp
absorption lines associated with combined rotation-vibration transitions.
In addition: polar molecules — far infrared ‘rotation-only’ absorption lines

Polar liquids

- Large static &, broad absorption and drop in static & at GHz frequencies (Debye
model)

Insulators

- low absorption throughout visible, x < ~0.001.

- Significant absorption onset above 4 eV (‘significant’ = k> (0.001)

- Normal dispersion throughout VIS

- Typical refractive index 1.2 - 2 (few valence electrons per atom, strongly bound
= little charge motion = small dipole moment = low ¥ = small index of
refraction)

- Low index = low single interface reflection: R = 1-10%

- Compound insulators: strong phonon-related resonances in infrared: Reststrahlen
band, strong asymmetric absorption peak(s), large dispersion near mr; large &/0)

Semiconductors

- Electronic absorption starts below 4eV (k > ~0.001)

- Broad absorption bands

- Normal dispersion below first strong absorption (e.g. in the infrared)

- Typical refractive index 2.5 — 4 at low frequency (weak spring and multiple
valence electrons per atom = large motion of many charges = large index)

- Typically: entirely real index at low frequency

- Possibly free carrier absorption at low frequency, giving a. oc A* (due to dopants
or thermally/optically excited charges)

- High single-interface reflection coefficient , R = 20-40%
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Compound semiconductors: strong phonon-related resonances in infrared:
Reststrahlen band, strong asymmetric absorption peak(s), large dispersion near wr;
large static €(0)

Direct gap: sudden onset of interband absorption

Indirect gap: gradual rise of absorption, peaks/steps related to phonon-assisted
transitions at low temperature

Low temperature: exciton-related peaks near band-edge

Low temperature, doped semiconductors: IR absorption due to dopant ionization

Large k at low frequency

Real part of index less than one at low frequency

Real part of & negative at low frequency

Plasma frequency (e’ =0 or k = n) typically in the VIS or near-UV

Large reflection coefficient (typically R > ~0.8)

Sometimes evidence of d-band transition (bump in €”)

Typical low-frequency (VIS-NIR) skin depth: tens of nm (o ~107-10% /m)

No clear phonon resonances in optical response (metals cannot sustain polar
bonds)
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Appendix M — Fundamental physical constants

Relative std.

Quantity Symbol Value Unit uncert.
speed of light in vacuum ¢, co 299792 458 ms! (exact)
magnetic constant o 4m % 1077 NA-2

=12.566370614... x 1077 NA~? (exact)

electric constant 1/ppc? o 8.854 187 817... x 10712 Fm™! (exact)
Newtonian constant

of gravitation G 6.6742(10) x 10711 mikg~ls2 15x 104
Planck constant h 6.626 0693(11) = 1034 Ts 1.7 x 1077

h/2m h 1.054 571 68(18) x 10—34 Ts 1.7%x 1077
elementary charge e 1.60217653(14) x 1071 ¢ 8.5 % 1078
magnetic flux quantum h/2e &g 2.06783372(18) x 10~ Wb 8.5 x 10—
conductance quantum 2e%/h Go 7.748091733(26) x 10~° S 3.3% 102
electron mass me 9.109 3826(16) = 1031 kg 1.7 % 1077
proton mass m, 1.67262171(29) % 10727 ke 1.7 % 1077
proton-electron mass ratio mpy/me  1836.152 672 61(85) 4.6 x 10719
fine-structure constant e?/4meghe o 7.297 352 568(24) x 10732 3.3 x107°
inverse fine-structure constant o~ ! 137.035999 11(46) 3w 10

Rydberg constant a*mec/2h R 10973 731.568 525(73) m! 6.6 x 10712
Avogadro constant AL 6.0221415(10) x 10%3 mol~! 1.7 % 1077
Faraday constant Ny e F 96 485.3383(83) Cmol™! 8.6 x 1078
molar gas constant R 8.314472(15) Tmol ' K~! 1.7x10°°
Boltzmann constant R/N, k 1.3806505(24) = 10—22 TK! 1.8 %1076
Stefan-Boltzmann constant

(R2/60)k/h3c2 o 5.670400(40) x 105 Wm2K4  7.0x10°

Non-SI units accepted for use with the SI

electron volt: (e/C) T eV 1.60217653(14) = 10719 1 8.5 %1078
(unified) atomic mass unit

lu=my = 11—.2n1(12C) u 1.660 538 86(28) > 1027 ke 1.7%x 1077

= 1073 kgmol~!/Ny
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Index

Abbe number, 170 Free carrier absorption, 146
Absorbed Power, 156 free-carrier absorption, 49
absorption coefficient, 26 Full width at half maximum, 40
Absorption coefficient, 25 FWHM, 40

absorption cross-section, 46, 157 GaAs, 127

acceptors, 145 Gallium Arsenide, 127
Acceptors, 145 Gauss’ Theorem, 163

AlSb, 122 Gaussian lineshape, 84
Ampere’s Law, 165 GeO2, 124

angular momentum, 96 HCl, 99

anharmonicity coefficients, 71 Hertzberger description, 170
Anti-Stokes scattering, 102 high frequency dielectric constant, 45
Approximations, 179, 191 Hindered rotational modes, 105
band gap, 135 hole, 144

Band Structure, 131 Impulse Response, 19

Bloch function, 133 Impurity absorption, 145
Born-Oppenheimer Approximation, 90 InAs, 143

Brillouin Zone, 115 indirect gap, 136

Cauchy Principal Value, 32 inhomogeneous broadening, 81
Cauchy’s integral, 31 Insulators, 44

Centrosymmetric materials, 78 interband absorption, 136
Centrosymmetric potential, 72 Interband absorption, 137
collision rate, 47 interband transitions, 51
complex conjugate, 21 irradiance, 25

conduction band, 135 isomer, 60

Copper, 53 ITO, 54

Coulomb gauge, 151 joint density of states, 142

Curl, 161, 163 KCl, 44

cyclotron resonance frequency, 66 Kramers-Kronig relations, 27
Density of States, 138 for index and absorption, 29
Diamond, 128 for reflected Amplitude and phase, 33
Dipole active modes, 91 for susceptibility, 27

dipole radiation, 151 k-space, 139

direct transition, 136 Laplacian, 161

direct-gap, 136 Larmor Precession frequency, 66
Divergence, 162 LCP, 64

Divergence Theorem, 163 left-circularly polarized light, 64
donors, 145 LiF, 126

Donors, 145 LiNbO3, 129

Doped Insulators, 45 Lithium Fluoride, 126

Doppler broadening, 81, 83 Lithium Niobate, 129

Drude conductivity, 55 longitudinal optical phonon, 121
Drude model, 47 Lorentz force, 66

effective mass, 135 Lorentz model, 35

e-h pair, 144 Lorentzian, 40

enantiomers, 60 Lorentzian lineshape, 84
exciton, 144 Lyddane-Sachs-Teller relationship, 121
Exciton absorption, 144 Maxwellian velocity distribution, 83
Faraday Rotation, 69 Microscopic theory of refractive index, 151
Fermi Golden Rule, 138 Miller’s delta, 77

Fermions, 135 Miller’s rule, 77

Franck-Condon principle, 100 moment of inertia, 96
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Morse Potential, 87 scalar wave equation, 12

nabla, 162 Scattered Power, 155

Noble Metals, 51 scattering cross section, 156
Non-centrosymmetric materials, 72, 76 Schott glass description, 169
Non-centrosymmetric potential, 72 second order susceptibility, 75
Nonlinear Optical materials, 71 selection-rule for dipole rotational
Normal modes, 88 transitions, 96

Optical Activity, 59 Sellmeier equations, 161, 167, 173, 175,
oscillator strength, 40 177,181, 182, 193

phase velocity, 13 semiconductors, 131

phonons, 113 Silver, 52

plasma frequency, 39 skin depth, 26, 55

Plasma oscillations, 50 static dielectric constant, 45
point dipole, 152 Stoke’s Theorem, 163

polar solids, 120 Stokes scattering, 102
Polaritons, 124 sub-bands, 148

Poynting vector, 154 third order susceptibility, 79
quantized energy states, 148 Thomas-Reich-Kuhn sum rule, 40
quantum dots, 149 Tin-doped Indium Oxide, 54
Quantum wells, 148 transition matrix element, 138
quantum wires, 149 transparency, 44

Raman active modes, 101 transverse gauge, 151

Raman Scattering, 101 transverse optical phonon, 119
RCP, 64 TRK Sum Rule, 40

reality condition, 21, 29 vacuum permeability, 11
reciprocal space, 139 vacuum permittivity, 11
reduced mass, 94 vacuum wavelength, 13
refractive index, 17 valence band, 135

relative permittivity, 24 vector Laplacian, 162

Residue Theorem, 32 vector potential, 151

Resonance Approximation, 40, 46 Verdet coefficient, 70
Reststrahlen, 123 Vibrational transitions, 98
right-circularly polarized light, 64 vibration-rotation transitions, 99
Rotational Correlation time, 109 Voigt lineshape, 84

rotational modes, 96 Zeeman Splitting, 66

rotatory coefficient, 59 zone center, 135

rotatory power, 65
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